dc.contributor.author |
Hieu Pham, Huy |
dc.contributor.author |
Salmane, Houssam |
dc.contributor.author |
Khoudour, Louahdi |
dc.contributor.author |
Crouzil, Alain |
dc.contributor.author |
Zegers, Pablo |
dc.contributor.author |
Velastin Carroza, Sergio Alejandro
|
dc.date.accessioned |
2019-09-26T08:16:08Z |
dc.date.available |
2019-09-26T08:16:08Z |
dc.date.issued |
2019-08-27 |
dc.identifier.bibliographicCitation |
Pham, H.H., Salmane, H., Khoudour, L., Crouzil, A., Zegers, P. y Velastin, S.A. (2019). A Deep Learning Approach for Real-Time 3D Human Action Recognition from Skeletal Data. In International Conference on Image Analysis and Recognition, 11662, pp 18-32. |
dc.identifier.isbn |
978-3-030-27201-2 |
dc.identifier.uri |
http://hdl.handle.net/10016/28906 |
dc.description |
This paper has been published at the Proceedings of 16th International Conference on Image Analysis and Recognition |
dc.description |
Contains Supplementary material |
dc.description.abstract |
We present a new deep learning approach for real-time 3D human action recognition from skeletal data and apply it to develop a vision-based intelligent surveillance system. Given a skeleton sequence, we propose to encode skeleton poses and their motions into a single RGB image. An Adaptive Histogram Equalization (AHE) algorithm is then applied on the color images to enhance their local patterns and generate more discriminative features. For learning and classification tasks, we design Deep Neural Networks based on the Densely Connected Convolutional Architecture (DenseNet) to extract features from enhanced-color images and classify them into classes. Experimental results on two challenging datasets show that the proposed method reaches state-of-the-art accuracy, whilst requiring low computational time for training and inference. This paper also introduces CEMEST, a new RGB-D dataset depicting passenger behaviors in public transport. It consists of 203 untrimmed real-world surveillance videos of realistic normal and anomalous events. We achieve promising results on real conditions of this dataset with the support of data augmentation and transfer learning techniques. This enables the construction of real-world applications based on deep learning for enhancing monitoring and security in public transport. |
dc.description.sponsorship |
This research was supported by the Cerema, France. Sergio A.
Velastin is grateful for funding from the Universidad Carlos III de Madrid, the EU’s 7th Framework Programme for Research, Technological Development and demonstration (grant 600371), Ministerio de Economia, Industria y Competitividad (COFUND2013- 51509), Ministerio de Educación, cultura y Deporte (CEI-15-17) and Banco Santander. |
dc.format.extent |
21 |
dc.language.iso |
eng |
dc.publisher |
Springer |
dc.rights |
© Springer Nature Switzerland AG 2019 |
dc.subject.other |
Action recognition |
dc.subject.other |
Skeletal data |
dc.subject.other |
Enhanced-spmf |
dc.subject.other |
Densenet |
dc.title |
A Deep Learning Approach for Real-Time 3D Human Action Recognition from Skeletal Data |
dc.type |
bookPart |
dc.type |
conferenceObject |
dc.subject.eciencia |
Informática |
dc.identifier.doi |
https://doi.org/10.1007/978-3-030-27202-9_2 |
dc.rights.accessRights |
openAccess |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/H2020/600371 |
dc.relation.projectID |
Gobierno de España. COFUND2013-51509 |
dc.relation.projectID |
Gobierno de España. CEI-15-17 |
dc.type.version |
acceptedVersion |
dc.relation.eventdate |
27-29 August 2019 |
dc.relation.eventplace |
Waterloo, Ontario, Canada |
dc.relation.eventtitle |
16th International Conference on Image Analysis and Recognition (ICIAR 2019) |
dc.relation.eventtype |
proceeding |
dc.identifier.publicationfirstpage |
18 |
dc.identifier.publicationlastpage |
32 |
dc.identifier.publicationtitle |
Image Analysis and Recognition |
dc.identifier.publicationvolume |
11662 |
dc.identifier.uxxi |
CC/0000029968 |
dc.contributor.funder |
European Commission |
dc.contributor.funder |
Ministerio de Economía y Competitividad (España) |
dc.contributor.funder |
Ministerio de Educación, Cultura y Deporte (España) |