Parallel source code transformation techniques using design patterns

e-Archivo Repository

Show simple item record

dc.contributor.advisor García Sánchez, José Daniel
dc.contributor.author Río Astorga, David del
dc.date.accessioned 2018-11-23T09:22:26Z
dc.date.available 2018-11-23T09:22:26Z
dc.date.issued 2018-07
dc.date.submitted 2018-10-19
dc.identifier.uri http://hdl.handle.net/10016/27740
dc.description Mención Internacional en el título de doctor
dc.description.abstract In recent years, the traditional approaches for improving performance, such as increasing the clock frequency, has come to a dead-end. To tackle this issue, parallel architectures, such as multi-/many-core processors, have been envisioned to increase the performance by providing greater processing capabilities. However, programming efficiently for this architectures demands big efforts in order to transform sequential applications into parallel and to optimize such applications. Compared to sequential programming, designing and implementing parallel applications for operating on modern hardware poses a number of new challenges to developers such as data races, deadlocks, load imbalance, etc. To pave the way, parallel design patterns provide a way to encapsulate algorithmic aspects, allowing users to implement robust, readable and portable solutions with such high-level abstractions. Basically, these patterns instantiate parallelism while hiding away the complexity of concurrency mechanisms, such as thread management, synchronizations or data sharing. Nonetheless, frameworks following this philosophy does not share the same interface and users require understanding different libraries, and their capabilities, not only to decide which fits best for their purposes but also to properly leverage them. Furthermore, in order to parallelize these applications, it is necessary to analyze the sequential code in order to detect the regions of code that can be parallelized that is a time consuming and complex task. Additionally, different libraries targeted to specific devices provide some algorithms implementations that are already parallel and highly-tuned. In these situations, it is also necessary to analyze and determine which routine implementation is the most suitable for a given problem. To tackle these issues, this thesis aims at simplifying and minimizing the necessary efforts to transform sequential applications into parallel. This way, resulting codes will improve their performance by fully exploiting the available resources while the development efforts will be considerably reduced. Basically, in this thesis, we contribute with the following. First, we propose a technique to detect potential parallel patterns in sequential code. Second, we provide a novel generic C++ interface for parallel patterns which acts as a switch among existing frameworks. Third, we implement a framework that is able to transform sequential code into parallel using the proposed pattern discovery technique and pattern interface. Finally, we propose mechanisms that are able to select the most suitable device and routine implementation to solve a given problem based on previous performance information. The evaluation demonstrates that using the proposed techniques can minimize the refactoring and optimization time while improving the performance of the resulting applications with respect to the original code.
dc.description.abstract En los últimos años, las técnicas tradicionales para mejorar el rendimiento, como es el caso del incremento de la frecuencia de reloj, han llegado a sus límites. Con el fin de seguir mejorando el rendimiento, se han desarrollado las arquitecturas paralelas, las cuales proporcionan un incremento del rendimiento al estar provistas de mayores capacidades de procesamiento. Sin embargo, programar de forma eficiente para estas arquitecturas requieren de grandes esfuerzos por parte de los desarrolladores. Comparado con la programación secuencial, diseñar e implementar aplicaciones paralelas enfocadas a trabajar en estas arquitecturas presentan una gran cantidad de dificultades como son las condiciones de carrera, los deadlocks o el incorrecto balanceo de la carga. En este sentido, los patrones paralelos son una forma de encapsular aspectos algorítmicos de las aplicaciones permitiendo el desarrollo de soluciones robustas, portables y legibles gracias a las abstracciones de alto nivel. En general, estos patrones son capaces de proporcionar el paralelismo a la vez que ocultan las complejidades derivadas de los mecanismos de control de concurrencia necesarios como el manejo de los hilos, las sincronizaciones o la compartición de datos. No obstante, los diferentes frameworks que siguen esta filosofía no comparten una única interfaz lo que conlleva que los usuarios deban conocer múltiples bibliotecas y sus capacidades, con el fin de decidir cuál de ellos es mejor para una situación concreta y como usarlos de forma eficiente. Además, con el fin de paralelizar aplicaciones existentes, es necesario analizar e identificar las regiones del código que pueden ser paralelizadas, lo cual es una tarea ardua y compleja. Además, algunos algoritmos ya se encuentran implementados en paralelo y optimizados para arquitecturas concretas en diversas bibliotecas. Esto da lugar a que sea necesario analizar y determinar que implementación concreta es la más adecuada para solucionar un problema dado. Para paliar estas situaciones, está tesis busca simplificar y minimizar el esfuerzo necesario para transformar aplicaciones secuenciales en paralelas. De esta forma, los códigos resultantes serán capaces de explotar los recursos disponibles a la vez que se reduce considerablemente el esfuerzo de desarrollo necesario. En general, esta tesis contribuye con lo siguiente. En primer lugar, se propone una técnica de detección de patrones paralelos en códigos secuenciales. En segundo lugar, se presenta una interfaz genérica de patrones paralelos para C++ que permite seleccionar la implementación de dichos patrones proporcionada por frameworks ya existentes. En tercer lugar, se introduce un framework de transformación de código secuencial a paralelo que hace uso de las técnicas de detección de patrones y la interfaz presentadas. Finalmente, se proponen mecanismos capaces de seleccionar la implementación más adecuada para solucionar un problema concreto basándose en el rendimiento obtenido en ejecuciones previas. Gracias a la evaluación realizada se ha podido demostrar que uso de las técnicas presentadas pueden minimizar el tiempo necesario para transformar y optimizar el código a la vez que mejora el rendimiento de las aplicaciones transformadas.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Auto-tuning
dc.subject.other Code refactoring
dc.subject.other Pattern detection
dc.subject.other Parallel patterns
dc.title Parallel source code transformation techniques using design patterns
dc.type doctoralThesis
dc.subject.eciencia Informática
dc.rights.accessRights openAccess
dc.description.degree Programa Oficial de Doctorado en Ciencia y Tecnología Informática
dc.description.responsability Presidente: David Expósito Singh.- Secretario: Rafael Asenjo Plaza.- Vocal: Marco Aldinucci
dc.contributor.departamento Universidad Carlos III de Madrid. Departamento de Informática
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record