Role of beta-stabilizing elements on the microstructure and mechanical properties evolution of modified PM Ti surfaces designed for biomedical applications

e-Archivo Repository

Show simple item record

dc.contributor.author Ureña Alcázar, Julia María
dc.contributor.author Tejado, E.
dc.contributor.author Pastor, J.Y.
dc.contributor.author Velasco López, Francisco Javier
dc.contributor.author Tsipas, Sophia Alexandra
dc.contributor.author Jiménez Morales, Antonia
dc.contributor.author Gordo Odériz, Elena
dc.date.accessioned 2018-10-01T14:54:12Z
dc.date.available 2019-01-24T23:00:06Z
dc.date.issued 2018-01-24
dc.identifier.bibliographicCitation Powder Metallurgy, 61(2), 2018, pp. 90-99.
dc.identifier.issn 0032-5899
dc.identifier.uri http://hdl.handle.net/10016/27501
dc.description Invited keynotes paper from EUROPM2017, Milan.
dc.description.abstract This work focuses on the evaluation of modified surfaces on Ti produced by powder metallurgy. These newly designed surface modifications are achieved by deposition and diffusion of a stable aqueous suspension prepared in one case from micro-sized Nb powder (Ti beta-stabilizer element) and in another case from Nb plus the addition of ammonium chloride, NH4Cl, (thermo-reactive diffusion process). Different design parameters such as diffusion element (Nb or Mo), state of the Ti substrate (green or sintered) and the treatment process (diffusion or thermo-reactive diffusion) lead to all the surface-modified materials, GreenTi-Nb, SintTi-Nb and Ti-Nb-NH4Cl, GreenTi-Mo, SintTi-Mo and Ti-Mo-NH4Cl. The modified Ti surfaces present a gradient in composition and microstructure (beta / alpha+beta / alpha phases) resulting in an improvement in some of their mechanical properties: (1) higher micro-hardness in all the modified materials and (2) lower elastic modulus (more similar to that of the human bone) in those without NH4Cl.
dc.description.sponsorship The authors would like to thank the funding provided for this research by the Regional Government of Madrid (program MULTIMAT-CHALLENGE-CM, ref. S2013/MIT- 2862), and by the Ministry of Economy and Competitiveness of Spain (program MINECO, ref. PCIN-2016-123 and Ramón y Cajal contract RYC-2014-15014).
dc.format.extent 9
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher Taylor & Francis Online
dc.relation.ispartof http://hdl.handle.net/10016/27609
dc.rights © 2018 Institute of Materials, Minerals and Mining Published by Taylor & Francis on behalf of the Institute
dc.subject.other Titanium
dc.subject.other Surface modification
dc.subject.other Powder technology
dc.subject.other Microstructural-gradient
dc.subject.other Elastic modulus
dc.subject.other Hardness
dc.title Role of beta-stabilizing elements on the microstructure and mechanical properties evolution of modified PM Ti surfaces designed for biomedical applications
dc.type article
dc.subject.eciencia Materiales
dc.subject.eciencia Medicina
dc.identifier.doi https://doi.org/10.1080/00325899.2018.1426185
dc.rights.accessRights openAccess
dc.relation.projectID Comunidad de Madrid. S2013/MIT-2862/MULTIMAT-CHALLENGE-CM
dc.relation.projectID Gobierno de España. PCIN-2016-123
dc.relation.projectID Gobierno de España. RYC-2014-15014
dc.type.version acceptedVersion
dc.relation.eventdate 2017, 1-5 October
dc.relation.eventplace Milan, Italy
dc.relation.eventtitle European Congress and Exhibition on Powder Metallurgy (Euro PM2017 Congress & Exhibition)
dc.relation.eventtype proceeding
dc.identifier.publicationfirstpage 90
dc.identifier.publicationissue 2
dc.identifier.publicationlastpage 99
dc.identifier.publicationtitle Powder Metallurgy
dc.identifier.publicationvolume 61
dc.identifier.uxxi AR/0000021340
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record