Sponsor:
AVR and JARM are indebted to the Ministerio de Economía y Competitividad de España (Projects EUIN2015-62556 and DPI2014- 57989-P ) for the financial support which permitted to conduct part of this work. AM and JARM acknowledge the support by the French State through the program Investment in the future operated by the National Research Agency (ANR) and referenced by ANR-11-LABX- 0 0 08-01 (LabEx DAMAS). The research leading to these results has received funding from the European Union’s Horizon2020 Programme (Excellent Sci- ence, Marie Sklodowska-Curie Actions) under REA grant agreement 675602 (Project OUTCOME).
Project:
Gobierno de España. EUIN2015-62556 Gobierno de España. DPI2014-57989-P info:eu-repo/grantAgreement/EC/H2020/675602
In this paper we explore the inception and development of multiple necks in incompressible nonlinear elastic bars subjected to dynamic stretching. The goal is to elucidate the role played by a spatial-localized defect of the strain rate field in the necking paIn this paper we explore the inception and development of multiple necks in incompressible nonlinear elastic bars subjected to dynamic stretching. The goal is to elucidate the role played by a spatial-localized defect of the strain rate field in the necking pattern that emerges in the bars at large strains. For that task, we have used two different approaches: (1) finite element simulations and (2) linear stability analyses. The finite element simulations have revealed that, while the defect of the strain rate field speeds up the development of the necking pattern in the late stages of the localization process, the characteristic (average) neck spacing is largely independent of the defect within a wide range of defect amplitudes. The numerical results have been rationalized with the linear stability analyses, which enabled to explain the average spacing characterizing the necking pattern at high strain rates. Moreover, the numerical calculations have also shown that, due to inertia effects, the core of the localization process occurs during the post-uniform deformation regime of the bar, at strains larger than the one based on the Considère criterion. This phenomenon of neck retardation is shown to have a meaningful influence on the necking pattern.[+][-]