Analyzing the behavior of students regarding learning activities, badges, and academic dishonesty in MOOC environment

e-Archivo Repository

Show simple item record

dc.contributor.advisor Muñoz Merino, Pedro José
dc.contributor.author Ruipérez-Valiente, José A.
dc.date.accessioned 2017-09-19T16:14:38Z
dc.date.available 2017-09-19T16:14:38Z
dc.date.issued 2017-04
dc.date.submitted 2017-05-31
dc.identifier.uri http://hdl.handle.net/10016/25297
dc.description Mención Internacional en el título de doctor
dc.description.abstract The ‘big data’ scene has brought new improvement opportunities to most products and services, including education. Web-based learning has become very widespread over the last decade, which in conjunction with the Massive Open Online Course (MOOC) phenomenon, it has enabled the collection of large and rich data samples regarding the interaction of students with these educational online environments. We have detected different areas in the literature that still need improvement and more research studies. Particularly, in the context of MOOCs and Small Private Online Courses (SPOCs), where we focus our data analysis on the platforms Khan Academy, Open edX and Coursera. More specifically, we are going to work towards learning analytics visualization dashboards, carrying out an evaluation of these visual analytics tools. Additionally, we will delve into the activity and behavior of students with regular and optional activities, badges and their online academically dishonest conduct. The analysis of activity and behavior of students is divided first in exploratory analysis providing descriptive and inferential statistics, like correlations and group comparisons, as well as numerous visualizations that facilitate conveying understandable information. Second, we apply clustering analysis to find different profiles of students for different purposes e.g., to analyze potential adaptation of learning experiences and pedagogical implications. Third, we also provide three machine learning models, two of them to predict learning outcomes (learning gains and certificate accomplishment) and one to classify submissions as illicit or not. We also use these models to discuss about the importance of variables. Finally, we discuss our results in terms of the motivation of students, student profiling, instructional design, potential actuators and the evaluation of visual analytics dashboards providing different recommendations to improve future educational experiments.
dc.description.abstract Las novedades en torno al ‘big data’ han traído nuevas oportunidades de mejorar la mayoría de productos y servicios, incluyendo la educación. El aprendizaje mediante tecnologías web se ha extendido mucho durante la última década, que conjuntamente con el fenómeno de los cursos abiertos masivos en línea (MOOCs), ha permitido que se recojan grandes y ricas muestras de datos sobre la interacción de los estudiantes con estos entornos virtuales de aprendizaje. Nosotros hemos detectado diferentes áreas en la literatura que aún necesitan de mejoras y del desarrollo de más estudios, específicamente en el contexto de MOOCs y cursos privados pequeños en línea (SPOCs). En la tesis nos hemos enfocado en el análisis de datos en las plataformas Khan Academy, Open edX y Coursera. Más específicamente, vamos a trabajar en interfaces de visualizaciones de analítica de aprendizaje, llevando a cabo la evaluación de estas herramientas de analítica visual. Además, profundizaremos en la actividad y el comportamiento de los estudiantes con actividades comunes y opcionales, medallas y sus conductas en torno a la deshonestidad académica. Este análisis de actividad y comportamiento comienza primero con análisis exploratorio proporcionando variables descriptivas y de inferencia estadística, como correlaciones y comparaciones entre grupos, así como numerosas visualizaciones que facilitan la transmisión de información inteligible. En segundo lugar aplicaremos técnicas de agrupamiento para encontrar distintos perfiles de estudiantes con diferentes propósitos, como por ejemplo para analizar posibles adaptaciones de experiencias educativas y sus implicaciones pedagógicas. También proporcionamos tres modelos de aprendizaje máquina, dos de ellos que predicen resultados finales de aprendizaje (ganancias de aprendizaje y la consecución de certificados de terminación) y uno para clasificar que ejercicios han sido entregados de forma deshonesta. También usaremos estos tres modelos para analizar la importancia de las variables. Finalmente, discutimos todos los resultados en términos de la motivación de los estudiantes, diferentes perfiles de estudiante, diseño instruccional, posibles sistemas actuadores, así como la evaluación de interfaces de analítica visual, proporcionando recomendaciones que pueden ayudar a mejorar futuras experiencias educacionales.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Learning analytics
dc.subject.other Educational technology
dc.subject.other Educational data mining
dc.subject.other Information visualization
dc.subject.other MOOCs
dc.subject.other SPOOCs
dc.subject.other Behavioral modeling
dc.subject.other Machine learning
dc.subject.other Learning platforms
dc.title Analyzing the behavior of students regarding learning activities, badges, and academic dishonesty in MOOC environment
dc.type doctoralThesis
dc.subject.eciencia Telecomunicaciones
dc.rights.accessRights openAccess
dc.description.degree Programa Oficial de Doctorado en Ingeniería Telemática
dc.description.responsability Presidente: Davinia Hernández Leo.- Secretario: Luis Sánchez Fernández.- Vocal: Adolfo Ruiz Calleja
dc.contributor.departamento Universidad Carlos III de Madrid. Departamento de. Ingeniería Telemática
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record