Citation:
Journal of the Mechanical Behavior of Biomedical Materials, 67, March 2017, pp. 110–116
ISSN:
1751-6161
DOI:
10.1016/j.jmbbm.2016.12.005
Sponsor:
The authors want to acknowledge the financial support from New Zealand Ministry of Business, Innovation and Employment (MBIE) through the UOWX1402 research contract (TiTeNZ - Titanium Technologies New Zealand).
Titanium and its alloys are common biomedical materials owing to their combination ofmechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because chanTitanium and its alloys are common biomedical materials owing to their combination ofmechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing theprocessing parameters, such as the sintering temperature, products with different level ofporosity and mechanical performances can be obtained. This study addresses the productionof the biomedical Ti-6Al-7Nb alloy by means of the master alloy addition variant of the PMblending elemental approach. The sintering parameters investigated guarantee that thecomplete diffusion of the alloying elements and the homogenization of the microstructure isachieved. The sintering of the Ti-6Al-7Nb alloy induces a total shrinkage between 7.4% and10.7% and the level of porosity decreases from 6.2% to 4.7% with the increment of thesintering temperature. Vickers hardness (280-300 HV30) and tensile properties (differentcombination of strength and elongation around 900 MPa and 3%) are achieved.[+][-]