Hybrid welding of thermoset and thermoplastic composites: adhesion improvement

Repositorio e-Archivo

Mostrar el registro sencillo del ítem

dc.contributor.advisor Fernández Villegas, Irene
dc.contributor.advisor Torralba Castello, José Manuel
dc.contributor.author Nicolás Morillas, María de
dc.date.accessioned 2016-08-05T10:35:48Z
dc.date.available 2016-08-05T10:35:48Z
dc.date.issued 2015-07
dc.date.submitted 2015-07-10
dc.identifier.uri http://hdl.handle.net/10016/23472
dc.description.abstract Airplanes are the man-­‐made birds of the sky. Their efficiency for travelling, humanitarian aid, war  and  transport  are  self-­‐evident.  They  have  demonstrated  to  be  safe  and  fast,  with  a  constant  increase in the number of users and passengers throughout the years. Intense research is carried out in this field, and the aerodynamics, electronics and materials of the aircrafts have been continuously evolving. The aerospace and automotive industries have been replacing heavy materials, such as steel or aluminium, by lighter and tougher alternatives such as composite materials, which play nowadays a dramatic role in aircraft’s composition. For example, aluminium is being replaced by GLARE (“Glass Laminate Aluminium Reinforced Epoxy"), a structure that interlays aluminium films with glass fibre prepreg  laminates,  with  better  damage  tolerance,  corrosion  and  fire  resistance,  and  lower  specific  weight than conventional aluminium. Boeing 787 is made by a 50% of composite materials, including them in its fuselage, wings, tail, doors and interior. Airbus 380, the world’s largest passenger airliner, is made by a 25% of composite materials. Composites used in the aerospace engineering are made of a resin, generally a polymer, and a reinforcement, such as carbon or glass fibres. In particular, according to F. Fischer et al.: “The use  of  carbon-­‐fibre  reinforced  plastics  (CFRP)  is  increasing  in  all  areas  where  weight  reduction  enables an improvement, either in an economic or ecological way or as regards performance”. Polymers  can  be,  essentially,  of  three  kinds:  thermoplastics,  thermosets  and  elastomers.  Polymers  count with the benefits of excellent bulk and surface properties, low cost and good mechanical applications  nowadays.  Thermoplastics  present  high  ductility,  fracture  toughness  and  impact  resistance; moreover, thermoplastic composites (TPCs) can be cost-­‐effectively joined and manufactured.  Thermosets,  on  the  other  hand,  do  not  count  with  these  properties,  but  they  have  good compression, fatigue resistance and creep resistance. Regarding their characteristics, for some applications, thermoplastics may be used, and for others, thermosets are the answer: Thermoplastics are preferably used in small to medium-­‐sized parts, and thermosets are more economical to be used in  large  parts.  Their  combination,  in  order  to  take  advantage  of  the  benefits  of  both  materials  for  each application, is a fact in current aircraft structures. Here is where the main challenge of using these new materials arises: the joining of thermoplastics and thermosets. Mechanical fastening is the conventional  method  to  join  these  materials.  For  example,  in  the  fuselage  of  A350,  the  structural  frame is joined to the thermoset composite skin through thermoplastic clips and cleats. Apart from the extra weight and stress concentrations they imply – lightweight potential of the composite material  is  lost  due  to  the  need  of  reinforcement  in  the  areas  where  the  rivets  and  screws  are  inserted – when insufficient economical investment is devoted to their insertion, in order to assure the correct performance of the joining procedure, several problems may occur, such as delamination, water intrusion, galvanic corrosion and intensive labour they induce, among others. Then, in order to avoid the damage of the composite materials, and to save weight and economical resources, other joining alternatives are being taken into account...
dc.format.mimetype application/pdf
dc.language.iso eng
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Ensayo de materiales
dc.subject.other Aerospace engineering
dc.subject.other Thermoplastic composites (TPCs)
dc.subject.other Thermosets
dc.subject.other Adhesives
dc.subject.other Welding
dc.title Hybrid welding of thermoset and thermoplastic composites: adhesion improvement
dc.type bachelorThesis
dc.subject.eciencia Materiales
dc.rights.accessRights openAccess
dc.description.degree Ingeniería Aeroespacial
dc.contributor.departamento Universidad Carlos III de Madrid. Departamento de. Ciencia e Ingeniería de Materiales e Ingeniería Química
dc.contributor.departamento Technische Universiteit Delft
 Find Full text

Ficheros en el ítem

*Click en la imagen del fichero para previsualizar.(Los elementos embargados carecen de esta funcionalidad)


El ítem tiene asociada la siguiente licencia:

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem