Score-driven dynamic patent count panel data models

e-Archivo Repository

Show simple item record Blazsek, Szabolcs Istvan Escribano Sáez, Álvaro
dc.contributor.editor Universidad Carlos III de Madrid. Departamento de Economía
dc.contributor.other 2016-08-02T08:16:40Z 2016-08-02T08:16:40Z 2016-07
dc.identifier.issn 2340-5031
dc.description.abstract This paper suggests new Dynamic Conditional Score (DCS) count panel data models. We compare the statistical performance of static model, finite distributed lag model, exponential feedback model and different DCS count panel data models. For DCS we consider random walk and quasi-autoregressive formulations of dynamics. We use panel data for a large cross section of United States firms for period 1979 to 2000. We estimate models by using the Poisson quasi-maximum likelihood estimator with fixed effects. The estimation results and diagnostics tests suggest that the statistical performance of DCS-QAR is superior to that of alternative models.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.relation.ispartofseries UC3M working papers. Economics
dc.relation.ispartofseries 16-10
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.subject.other research and development
dc.subject.other count panel data
dc.subject.other dynamic conditional score
dc.subject.other quasi-maximum likelihood
dc.title Score-driven dynamic patent count panel data models
dc.type workingPaper
dc.subject.jel C33
dc.subject.jel C35
dc.subject.jel C51
dc.subject.jel C52
dc.subject.jel O3
dc.rights.accessRights openAccess
dc.type.version draft
dc.identifier.uxxi DT/0000001478
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record