Inverse Theorem on Row Sequences of Linear Pade-orthogonal Approximation

e-Archivo Repository

Show simple item record

dc.contributor.author Bosuwan, N.
dc.contributor.author López Lagomasino, Guillermo
dc.date.accessioned 2016-07-11T09:58:19Z
dc.date.available 2017-01-01T23:00:05Z
dc.date.issued 2015-12
dc.identifier.bibliographicCitation Computational Methods and Function Theory, 2015, 15, pp. 529-554.
dc.identifier.issn 1617-9447
dc.identifier.uri http://hdl.handle.net/10016/23320
dc.description.abstract We give necessary and sufficient conditions for the convergence with geometric rate of the denominators of linear Pade-orthogonal approximants corresponding to a measure supported on a general compact set in the complex plane. Thereby, we obtain an analog of Gonchar's theorem on row sequences of Pade approximants.
dc.description.sponsorship The research of N. Bosuwan is supported by Mahidol University. The research of G. López Lagomasino is supported by Ministerio de Economía y Competitividad under Grant MTM2012-36732-C03-01.
dc.format.extent 27
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher Springer
dc.rights © Springer 2015
dc.subject.other Padé approximation
dc.subject.other Padé-orthogonal approximation
dc.subject.other Orthogonal polynomials
dc.subject.other Inverse problems
dc.subject.other Fourier-Padé approximation
dc.title Inverse Theorem on Row Sequences of Linear Pade-orthogonal Approximation
dc.type article
dc.relation.publisherversion http://dx.doi.org/10.1007/s40315-015-0121-3
dc.subject.eciencia Matemáticas
dc.identifier.doi 10.1007/s40315-015-0121-3
dc.rights.accessRights openAccess
dc.relation.projectID Gobierno de España. MTM2012-36732-C03-01
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 529
dc.identifier.publicationissue 4
dc.identifier.publicationlastpage 554
dc.identifier.publicationtitle Computational Methods and Function Theory
dc.identifier.publicationvolume 15
dc.identifier.uxxi AR/0000017519
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record