Discovering common features in a large set of disaggregates : methodology, modeling and forecasting

e-Archivo Repository

Show simple item record

dc.contributor.advisor Espasa, Antoni
dc.contributor.author Carlomagno Real, Guillermo
dc.coverage.spatial east=-95.71289100000001; north=37.09024; name=Estados Unidos
dc.date.accessioned 2016-06-07T18:07:02Z
dc.date.available 2016-06-07T18:07:02Z
dc.date.issued 2016-02
dc.date.submitted 2016-05-26
dc.identifier.uri http://hdl.handle.net/10016/23159
dc.description.abstract Macroeconomic variables are, in general, weighted averages of a large number of components. Therefore, the usual focus on the aggregate alone implies neglecting a large amount of information. The general objective of this thesis is to develop a procedure to model and forecast all the components of a macro or business variable at the maximum level of disaggregation. We denote these components as basic components and usually their number is large (hundreds). Our strategy consist of identifying and estimating relevant relationships between the basic components and then exploiting those relationships in single-equation models for all the disaggregates. This strategy can produce relatively precise forecasts of the components and may lead to an accurate indirect forecast for the aggregate. Since we are interested in modeling and forecasting all the disaggregates, a large estimation effort is inevitable and the advantages of disaggregation could be off-set by estimation uncertainty issues. Our approach for dealing with the informational losses vs. estimation uncertainty trade-off is the consideration of common features, as proposed by Espasa and Mayo-Burgos (2013). Their suggestion is to try to discover blocks of components that share unique common features (trends and cycles), and then to include the restrictions implied by those commonalities in single-equation models for the components. The search for those blocks is carried out by performing common features tests between all the N(N − 1)/2 pairs that exist in a set of N components. As the authors argue, the level of disaggregation used in this procedure must be the maximum available since ad-hoc sub-aggregates may add up series that do not share common features. An important aim of this thesis is to show that the mentioned pairwise strategy can be used as an objective method to discover blocks of components sharing single common features. That is, blocks of components can be constructed by first testing for common features between all the N(N − 1)/2 pairs of series and then grouping those that share a unique common feature. In this thesis we study by analytical and simulation methods the statistical properties of the procedure, thus, providing a solid base for its application. An important theoretical result is that the pairwise cointegration tests in a block of series that share a unique common trend are asymptotically equivalent, in the sense that the probability that all tests deliver the same conclusion tends to 1 as T goes to infinity, independently of the number of series. Thus, in this case the multiple testing is not an issue. In a Monte Carlo experiment, we confirm the asymptotic results and compare the performance of the pairwise approach with that of a Dynamic Factor Models (DFM) alternative. Additionally, we extend the procedure to make it robust when applied to real data which may be subject to irregularities and/or to short samples problems. In regards to common cycles tests, we analytically justify the validity of proceeding in a pairwise fashion for discovering ‘single-cycle’ subsets. In contrast with our results on common trends, we show that the multiple testing problem is in fact present in common cycles tests. This issue makes the probability of including a large proportion of the true series inside the estimated ‘single-cycle’ set to be a decreasing function of the true size of the subset. This is an undesirable property, for we want our procedure to work well not only when subsets are small, but also when they are large. We show that a simple ‘relaxation’ strategy solves the problem, with almost zero cost. The application of the pairwise approach to the US CPI and the US IPI lead to interesting conclusions. First, a detailed analysis of outliers indicate that while the ‘great moderation’ period can be characterized by a negative significant mean shift in the proportion of components with outliers, the sub-prime crises is characterized by a significant and positive mean shift. Additionally, we found that the aggregated outlier — a series constructed by aggregating the outliers of the components — helps to improve the model of the aggregate. This is because there are some outliers that are not identifiable in the aggregated series. Finally, in pseudo out of sample forecasting exercises, we compare the ability of the pairwise approach to forecast the aggregate with other indirect and direct procedures. The general conclusions are similar for both applications; the consideration of common features’ restrictions helps to improve indirect forecasts and to beat direct procedures.
dc.description.abstract Las variables macroeconómicas son, en general, promedios ponderados de un gran número de componentes. Por tanto, el enfoque usual, que considera únicamente agregado implica descartar una gran cantidad de información. El objetivo general de esta tesis es desarrollar un procedimiento para modelizar y predecir todos los componentes de una variable macro-económica al máximo nivel de desagregación. Denotamos estos componentes como componentes básicos y por lo general su número es grande (cientos). Nuestra estrategia consiste en identificar y estimar relaciones relevantes entre los componentes básicos y luego explotar esas relaciones en modelos uni-ecuacionales para todos los componentes. Esta estrategia puede generar predicciones relativamente precisas de los componentes y puede dar lugar a una predicción indirecta certera para el agregado. Dado que estamos interesados en modelizar y predecir todos los componentes (no solamente el agregado), un gran esfuerzo de estimación es inevitable y las ventajas de la desagregación podrían perderse por cuestiones de incertidumbre de estimación. Nuestro enfoque para hacer frente al trade-off de pérdidas de información vs. incertidumbre en la estimación es la consideración de características comunes, como proponen Espasa and Mayo-Burgos (2013). Su sugerencia consiste en tratar de descubrir bloques de componentes que compartan características comunes únicas — common features — (tendencias y ciclos), y luego incluir las restricciones que se derivan de dichas características comunes en modelos uni-ecuacionales para todos los componentes. La búsqueda de esos bloques se lleva a cabo mediante la realización de contrastes de características comunes entre todos los N(N − 1)/2 pares que existen en un conjunto de N componentes. Como los autores argumentan, el nivel de desagregación utilizado en este procedimiento debe ser el máximo disponible ya que sub-agregados ad-hoc pueden agregar componentes que no comparten características comunes. Un objetivo importante de esta tesis es demostrar que la estrategia de pares mencionada puede ser utilizada como un método objetivo para descubrir bloques de componentes que comparten características comunes individuales. Es decir, los bloques de componentes pueden ser construidos contrastando características comunes entre todos los N(N − 1)/2 pares de series y, a continuación agrupando las que comparten una característica común única. En esta tesis se estudia mediante métodos analíticos y de simulación las propiedades estadísticas del procedimiento, proporcionando, por tanto, una base sólida para su aplicación. Un propósito específico central de esta tesis es demostrar que la estrategia por pares propuesta inicialmente por Espasa and Mayo-Burgos (2013) puede ser utilizada como un método objetivo para descubrir bloques de componentes que comparten características comunes individuales. Es decir, los bloques de componentes se pueden construir mediante la búsqueda de características comunes entre todos los N(N − 1)/2 pares de series y luego agrupar los que comparten una característica común única. Nuestra contribución principal en este aspecto consiste en proporcionar las propiedades estadísticas de la estrategia utilizando procedimientos analíticos y de Monte Carlo. Un resultado teórico importante es que los contrastes de cointegración por pares dentro de un bloque de series que comparten una única tendencia común asintóticamente equivalentes, en el sentido de que la probabilidad de que todos los contrastes arrojen la misma conclusión es tiende a 1 cuando T tiende a infinito, independientemente del número de series. Por lo tanto, en este caso, no hay un problema de contrastes múltiples. En un experimento de Monte Carlo, confirmamos los resultados asintóticos y comparamos el desempeño del enfoque por pares con el de una alternativa de Dynamic Factor Models (DFM). Adicionalmente extendemos el procedimiento para que sea robusto cuando se aplica a datos reales que pueden estar sujetos a irregularidades y/o problemas de muestras cortas. En lo que respecta a las pruebas de ciclos comunes, justificamos analíticamente la validez del procedimiento por pares para descubrir subconjuntos de “un sólo ciclo común”. En contraste con nuestros resultados para tendencias comunes, demostramos que el problema de contrastes múltiples sí está presente en las pruebas de ciclos comunes. Este problema hace que la probabilidad de incluir una gran proporción de series correctas dentro del subconjunto estimado sea una función decreciente del verdadero tamaño del subconjunto. Esta es una propiedad indeseable, porque queremos que nuestro procedimiento funcione bien no sólo cuando los subconjuntos son pequeños, sino también cuando son grandes. Demostramos sin embargo que una estrategia simple “relajación” resuelve el problema, casi con cero costo. La aplicación del enfoque por parejas al IPC y al IPI de Estados Unidos conduce a conclusiones interesantes. En primer lugar, el análisis detallado de valores atípicos indica que mientras el período de “la gran moderación” puede ser caracterizado por un cambio negativo y significativo en la media de la proporción de componentes con valores atípicos, las crisis sub-prime se caracteriza por un cambio de media significativo y positivo. Además, encontramos que el valor atípico agregado —una serie construida mediante la agregación de los valores atípicos de los componentes — ayuda a mejorar el modelo del agregado. Esto se debe a que algunos valores atípicos no son identificables en la serie agregada. Finalmente, en ejercicios de predicción seudo furera de muestra, comparamos la capacidad del enfoque por parejas para predecir el agregado con otros procedimientos indirectos y directos. Las conclusiones generales son similares en ambas aplicaciones; la consideración de restricciones derivadas de las características comunes ayuda a mejorar las predicciones indirectas y a superar a los procedimientos directos.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Macroeconomía
dc.subject.other Modelo matemático
dc.subject.other Estimación, Teoría de
dc.subject.other Incertidumbre
dc.title Discovering common features in a large set of disaggregates : methodology, modeling and forecasting
dc.type doctoralThesis
dc.subject.eciencia Economía
dc.rights.accessRights openAccess
dc.description.degree Programa Oficial de Doctorado en Economía de la Empresa y Métodos Cuantitativos
dc.description.responsability Presidente: Esther Ruiz Ortega; Secretario: Alfonso Novales Cinca; Vocal: Timo Terasvirta
dc.contributor.departamento Universidad Carlos III de Madrid. Departamento de Estadística
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record