Algorithms for energy-efficient adaptive wireless sensor networks

e-Archivo Repository

Show simple item record

dc.contributor.advisor Cid Sueiro, Jesús
dc.contributor.advisor Arenas García, Jerónimo
dc.contributor.author Fernández Bes, Jesús
dc.date.accessioned 2015-09-29T12:51:59Z
dc.date.available 2015-09-29T12:51:59Z
dc.date.issued 2015-06
dc.date.submitted 2015-06-18
dc.identifier.uri http://hdl.handle.net/10016/21636
dc.description Mención Internacional en el título de doctor
dc.description.abstract In this thesis we focus on the development of energy-efficient adaptive algorithms for Wireless Sensor Networks. Its contributions can be arranged in two main lines. Firstly, we focus on the efficient management of energy resources in WSNs equipped with finite-size batteries and energy-harvesting devices. To that end, we propose a censoring scheme by which the nodes are able to decide if a message transmission is worthy or not given their energetic condition. In order to do so, we model the system using a Markov Decision Process and use this model to derive optimal policies. Later, these policies are analyzed in simplified scenarios in order to get insights of their features. Finally, using Stochastic Approximation, we develop low-complexity censoring algorithms that approximate the optimal policy, with less computational complexity and faster convergence speed than other approaches such as Q-learning. Secondly, we propose a novel diffusion scheme for adaptive distributed estimation in WSNs. This strategy, which we call Decoupled Adapt-then-Combine (D-ATC), is based on keeping an estimate that each node adapts using purely local information and then combines with the diffused estimations by other nodes in its neighborhood. Our strategy, which is specially suitable for heterogeneous networks, is theoretically analyzed using two different techniques: the classical procedure for transient analysis of adaptive systems and the energy conservation method. Later, as using different combination rules in the transient and steady-state regime is needed to obtain the best performance, we propose two adaptive rules to learn the combination coefficients that are useful for our diffusion strategy. Several experiments simulating both stationary estimation and tracking problems show that our method outperforms state-of-the-art techniques in relevant scenarios. Some of these simulations reveal the robustness of our scheme under node failures. Finally, we show that both approaches can be combined in a common setup: a WSN composed of harvesting nodes aiming to solve an adaptive distributed estimation problem. As a result, a censoring scheme is added on top of D-ATC. We show how our censoring approach helps to improve both steady-state and convergence performance of the diffusion scheme.
dc.description.abstract La presente tesis se centra en el desarrollo de algoritmos adaptativos energéticamente eficientes para redes de sensores inalámbricos. Sus contribuciones se pueden englobar en dos líneas principales. Por un lado, estudiamos el problema de la gestión eficiente de recursos energéticos en redes de sensores equipadas con dispositivos de captación de energía y baterías finitas. Para ello, proponemos un esquema de censura mediante el cual, en un momento dado, un nodo es capaz de decidir si la transmisión de un mensaje merece la pena en las condiciones energéticas actuales. El sistema se modela mediante un Proceso de Decisión de Markov (Markov Decision Process, MDP) de horizonte infinito y dicho modelo nos sirve para derivar políticas óptimas de censura bajo ciertos supuestos. Después, analizamos estas políticas óptimas en escenarios simplificados para extraer intuiciones sobre las mismas. Por último, mediante técnicas de Aproximación Estocástica, desarrollamos algoritmos de censura de menor complejidad que aproximan estas políticas óptimas. Las numerosas simulaciones realizadas muestran que estas aproximaciones son competitivas, obteniendo una mayor tasa de convergencia y mejores prestaciones que otras técnicas del estado del arte como las basadas en Q-learning. Por otro lado, proponemos un nuevo esquema de difusión para estimación distribuida adaptativa. Esta estrategia, que denominamos Decoupled Adapt-then-Combine (D-ATC), se basa en mantener una estimación que cada nodo adapta con información puramente local y que posteriormente combina con las estimaciones difundidas por los demás nodos de la vecindad. Analizamos teóricamente nuestra estrategia, que es especialmente útil en redes heterogéneas, usando dos métodos diferentes: el método clásico para el análisis de régimen transitorio en sistemas adaptativos y el método de conservación de la energía. Posteriormente, y dado que para obtener el mejor rendimiento es necesario utilizar reglas de combinación diferentes en el transitorio y en régimen permanente, proponemos dos reglas adaptativas para el aprendizaje de los pesos de combinación para nuestra estrategia de difusión. La primera de ellas está basada en una aproximación de mínimos cuadrados (least-squares, LS); mientras que la segunda se basa en el algoritmo de proyecciones afines (Afifne Projection Algorithm, APA). Se han realizado numerosos experimentos tanto en escenarios estacionarios como de seguimiento que muestran cómo nuestra estrategia supera en prestaciones a otras aproximaciones del estado del arte. Algunas de estas simulaciones revelan además la robustez de nuestra estrategia ante errores en los nodos de la red. Por último, mostramos que estas dos aproximaciones son complementarias y las combinamos en mismo escenario: una red de sensores inalámbricos compuesta de nodos equipados con dispositivos de captación energética cuyo objetivo es resolver de manera distribuida y adaptativa un problema de estimación. Para ello, añadimos la capacidad de censurar mensajes a nuestro esquema D-ATC. Nuestras simulaciones muestran que la censura puede ser beneficiosa para mejorar tanto el rendimiento en régimen permanente como la tasa de convergencia en escenarios relevantes de estimación basada en difusión.
dc.description.sponsorship This work was partially supported by the "Formación de Profesorado Universitario" fellowship from the Spanish Ministry of Education (FPU AP2010-5225).
dc.format.mimetype application/pdf
dc.language.iso eng
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Energy-efficient adaptive algorithms
dc.subject.other Wireless sensor networks
dc.subject.other WSNs
dc.subject.other Markov Decision Process
dc.title Algorithms for energy-efficient adaptive wireless sensor networks
dc.type doctoralThesis
dc.subject.eciencia Electrónica
dc.subject.eciencia Telecomunicaciones
dc.rights.accessRights openAccess
dc.description.degree Programa Oficial de Doctorado en Multimedia y Comunicaciones
dc.description.responsability Presidente: Santiago Zazo Bello.- Secretario: Miguel Lázaro Gredilla.- Vocal: Alexander Bertrand
dc.contributor.departamento Universidad Carlos III de Madrid. Departamento de Teoría de la Señal y Comunicaciones
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record