Citation:
Combustion Theory and Modelling 18 (2014) 4-5, pp. 582-605
ISSN:
1364-7830
DOI:
10.1080/13647830.2014.946970
Sponsor:
This research was supported by the Spanish Ministerio de Ciencia e Innovación (MICINN) [Projects #ENE2011-27686-C02-01, #ENE2012-33213]; the Comunidad de Madrid [Project #S2009/ENE-1597, CONSOLIDER CSD2010-00011].
The propagation of premixed flames in adiabatic and non-catalytic planar microchannels subject to an assisted or opposed Poiseuille flow is considered. The diffusive-thermal model and the well-known two-step chain-branching kinetics are used in order to investThe propagation of premixed flames in adiabatic and non-catalytic planar microchannels subject to an assisted or opposed Poiseuille flow is considered. The diffusive-thermal model and the well-known two-step chain-branching kinetics are used in order to investigate the role of the differential diffusion of the intermediate species on the spatial and temporal flame stability. This numerical study successfully compares steady-state and time-dependent computations to the linear stability analysis of the problem. Results show that for fuel Lewis numbers less than unity, LeF 1, flames propagating in adiabatic channels suffer from oscillatory instabilities. The Poiseuille flow stabilises the flame and the effect of LeZ is opposite to that found for LeF < 1. Small values of LeZ further destabilise the flame to oscillating or pulsating instabilities.[+][-]