Theory of homogeneous vapour condensation and surface deposition from boundary layers

e-Archivo Repository

Show simple item record

dc.contributor.author Durán Camejo, Mario
dc.contributor.author López Bonilla, Luis Francisco
dc.date.accessioned 2014-12-02T11:48:13Z
dc.date.available 2014-12-02T11:48:13Z
dc.date.issued 2012-09
dc.identifier.bibliographicCitation Journal of Fluid Mechanics (2012), 706, 534-559.
dc.identifier.issn 0022-1120 (print)
dc.identifier.issn 1469-7645 (online)
dc.identifier.uri http://hdl.handle.net/10016/19754
dc.description.abstract Homogeneous condensation of vapours mixed with a carrier gas in the stagnation point boundary layer flow near a cold wall is considered. There is a condensation region near the wall with supersaturated vapour. Assuming that the surface tension times the molecular area is much larger than the thermal energy far from the wall, droplets are nucleated exclusively in a narrow nucleation layer where the Zeldovich flux of clusters surpassing the critical nucleus size is at a maximum. The vapour condenses in the free molecular regime on the droplets, which are thermophoretically attracted to the wall. Unlike the narrow condensation region for heterogeneous condensation on solid particles, in the case of homogeneous condensation the condensation region is wide even when the rate of vapour scavenging by droplets is large. A singular perturbation theory of homogeneous vapour condensation in boundary layer flow approximates very well the vapour and droplet density profiles, the nucleation layer and the deposition rates at the wall for wide ranges of the wall temperature and the scavenging parameter B. A key point in the theory is to select a trial vapour number density profile among a one parameter family of profiles between an upper and a lower bound. The maximum of the Zeldovich flux for supercritical nuclei provides the approximate location of the nucleation layer and an approximate droplet density profile. Then the condensate number of molecules and the vapour density profile are calculated by matched asymptotic expansions that also yield the deposition rates. For sufficiently large wall temperatures, a more precise corrected asymptotic theory is given.
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economía y Competitividad grant FIS2011-28838-C02-01 and by the Autonomous Region of Madrid grant P2009/ENE-1597 (HYSYCOMB).
dc.format.extent 26
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher Cambridge University Press
dc.rights © Cambridge University Press 2012
dc.subject.other Boundary layer structure
dc.subject.other Condensation/evaporation
dc.subject.other Multiphase flows
dc.title Theory of homogeneous vapour condensation and surface deposition from boundary layers
dc.type article
dc.description.status Publicado
dc.relation.publisherversion http://dx.doi.org/10.1017/jfm.2012.278
dc.subject.eciencia Física
dc.subject.eciencia Materiales
dc.subject.eciencia Ingeniería Mecánica
dc.subject.eciencia Química
dc.identifier.doi 10.1017/jfm.2012.278
dc.rights.accessRights openAccess
dc.relation.projectID Comunidad de Madrid. S2009/ENE-1597/HYSYCOMB
dc.relation.projectID Gobierno de España. FIS2011-28838-C02-01
dc.type.version acceptedVersion
dc.identifier.publicationfirstpage 534
dc.identifier.publicationlastpage 559
dc.identifier.publicationtitle Journal of fluid mechanics
dc.identifier.publicationvolume 706
dc.identifier.uxxi AR/0000010263
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


This item appears in the following Collection(s)

Show simple item record