dc.contributor.author |
Luis Bustamante, Álvaro
|
dc.contributor.author |
Molina, José M. |
dc.contributor.author |
Patricio Guisado, Miguel Ángel
|
dc.date.accessioned |
2014-05-30T10:03:22Z |
dc.date.available |
2014-05-30T10:03:22Z |
dc.date.issued |
2011-09 |
dc.identifier.bibliographicCitation |
Expert Systems with Applications, (2011), 38 (9), 10999–11010. |
dc.identifier.issn |
0957-4174 |
dc.identifier.uri |
http://hdl.handle.net/10016/18922 |
dc.description.abstract |
This paper deals with the multiobjective definition of video compression and its optimization. The optimization will be done using NSGA-II, a well-tested and highly accurate algorithm with a high convergence speed developed for solving multiobjective problems. Video compression is defined as a problem including two competing objectives. We try to find a set of optimal, so-called Pareto-optimal solutions, instead of a single optimal solution. The two competing objectives are quality and compression ratio maximization. The optimization will be achieved using a new patent pending codec, called MIJ2K, also outlined in this paper. Video will be compressed with the MIJ2K codec applied to some classical videos used for performance measurement, selected from the Xiph.org Foundation repository. The result of the optimization will be a set of near-optimal encoder parameters. We also present the convergence of NSGA-II with different encoder parameters and discuss the suitability of MOEAs as opposed to classical search-based techniques in this field. |
dc.description.sponsorship |
This work was supported in part by Projects CICYT TIN2008-
06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB,
CAM MADRINET S-0505/TIC/0255 and DPS2008-07029-C02-02. |
dc.format.extent |
12 |
dc.format.mimetype |
application/pdf |
dc.language.iso |
eng |
dc.publisher |
Elsevier |
dc.rights |
© 2011 Elsevier Ltd. |
dc.subject.other |
Multi-objective |
dc.subject.other |
Optimization |
dc.subject.other |
Video |
dc.subject.other |
Encoder |
dc.title |
MIJ2K Optimization using evolutionary multiobjective optimization algorithms |
dc.type |
article |
dc.description.status |
publicado |
dc.relation.publisherversion |
http://dx.doi.org/10.1016/j.eswa.2011.02.143 |
dc.subject.eciencia |
Informática |
dc.identifier.doi |
10.1016/j.eswa.2011.02.143 |
dc.rights.accessRights |
openAccess |
dc.type.version |
acceptedVersion |
dc.identifier.publicationfirstpage |
10999 |
dc.identifier.publicationissue |
9 |
dc.identifier.publicationlastpage |
11010 |
dc.identifier.publicationtitle |
Expert systems with applications |
dc.identifier.publicationvolume |
38 |
dc.identifier.uxxi |
AR/0000009188 |
dc.affiliation.dpto |
UC3M. Departamento de Informática |
dc.affiliation.grupoinv |
UC3M. Grupo de Investigación: Inteligencia Artificial Aplicada (GIAA) |