Reconstruction and recognition of confusable models using three-dimensional perception

e-Archivo Repository

Show simple item record

dc.contributor.advisor Moreno Lorente, Luis Enrique
dc.contributor.author García Bueno, Jorge
dc.date.accessioned 2014-02-18T13:32:45Z
dc.date.available 2014-02-18T13:32:45Z
dc.date.issued 2013
dc.date.submitted 2013-12-19
dc.identifier.uri http://hdl.handle.net/10016/18285
dc.description.abstract Perception is one of the key topics in robotics research. It is about the processing of external sensor data and its interpretation. The necessity of fully autonomous robots makes it crucial to help them to perform tasks more reliably, flexibly, and efficiently. As these platforms obtain more refined manipulation capabilities, they also require expressive and comprehensive environment models: for manipulation and affordance purposes, their models have to involve each one of the objects present in the world, coincidentally with their location, pose, shape and other aspects. The aim of this dissertation is to provide a solution to several of these challenges that arise when meeting the object grasping problem, with the aim of improving the autonomy of the mobile manipulator robot MANFRED-2. By the analysis and interpretation of 3D perception, this thesis covers in the first place the localization of supporting planes in the scenario. As the environment will contain many other things apart from the planar surface, the problem within cluttered scenarios has been solved by means of Differential Evolution, which is a particlebased evolutionary algorithm that evolves in time to the solution that yields the cost function lowest value. Since the final purpose of this thesis is to provide with valuable information for grasping applications, a complete model reconstructor has been developed. The proposed method holdsmany features such as robustness against abrupt rotations, multi-dimensional optimization, feature extensibility, compatible with other scan matching techniques, management of uncertain information and an initialization process to reduce convergence timings. It has been designed using a evolutionarybased scan matching optimizer that takes into account surface features of the object, global form and also texture and color information. The last tackled challenge regards the recognition problem. In order to procure with worthy information about the environment to the robot, a meta classifier that discerns efficiently the observed objects has been implemented. It is capable of distinguishing between confusable objects, such as mugs or dishes with similar shapes but different size or color. The contributions presented in this thesis have been fully implemented and empirically evaluated in the platform. A continuous grasping pipeline covering from perception to grasp planning including visual object recognition for confusable objects has been developed. For that purpose, an indoor environment with several objects on a table is presented in the nearby of the robot. Items are recognized from a database and, if one is chosen, the robot will calculate how to grasp it taking into account the kinematic restrictions associated to the anthropomorphic hand and the 3D model for this particular object. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
dc.description.abstract La percepción es uno de los temas más relevantes en el mundo de la investigaci ón en robótica. Su objetivo es procesar e interpretar los datos recibidos por un sensor externo. La gran necesidad de desarrollar robots autónomos hace imprescindible proporcionar soluciones que les permita realizar tareas más precisas, flexibles y eficientes. Dado que estas plataformas cada día adquieren mejores capacidades para manipular objetos, también necesitarán modelos expresivos y comprensivos: para realizar tareas de manipulación y prensión, sus modelos han de tener en cuenta cada uno de los objetos presentes en su entorno, junto con su localizaci ón, orientación, forma y otros aspectos. El objeto de la presente tesis doctoral es proponer soluciones a varios de los retos que surgen al enfrentarse al problema del agarre, con el propósito final de aumentar la capacidad de autonomía del robot manipulador MANFRED-2. Mediante el análisis e interpretación de la percepción tridimensional, esta tesis cubre en primer lugar la localización de planos de soporte en sus alrededores. Dado que el entorno contendrá muchos otros elementos aparte de la superficie de apoyo buscada, el problema en entornos abarrotados ha sido solucionado mediante Evolución Diferencial, que es un algoritmo evolutivo basado en partículas que evoluciona temporalmente a la solución que contempla el menor resultado en la función de coste. Puesto que el propósito final de este trabajo de investigación es proveer de información valiosa a las aplicaciones de prensión, se ha desarrollado un reconstructor de modelos completos. El método propuesto posee diferentes características como robustez a giros abruptos, optimización multidimensional, extensión a otras características, compatibilidad con otras técnicas de reconstrucción, manejo de incertidumbres y un proceso de inicialización para reducir el tiempo de convergencia. Ha sido diseñado usando un registro optimizado mediante técnicas evolutivas que tienen en cuenta las particularidades de la superficie del objeto, su forma global y la información relativa a la textura. El último problema abordado está relacionado con el reconocimiento de objetos. Con la intención de abastecer al robot con la mayor información posible sobre el entorno, se ha implementado un meta clasificador que diferencia de manera eficaz los objetos observados. Ha sido capacitado para distinguir objetos confundibles como tazas o platos con formas similares pero con diferentes colores o tamaños. Las contribuciones presentes en esta tesis han sido completamente implementadas y probadas de manera empírica en la plataforma. Se ha desarrollado un sistema que cubre el problema de agarre desde la percepción al cálculo de la trayectoria incluyendo el sistema de reconocimiento de objetos confundibles. Para ello, se ha presentado una mesa con objetos en un entorno cerrado cercano al robot. Los elementos son comparados con una base de datos y si se desea agarrar uno de ellos, el robot estimará cómo cogerlo teniendo en cuenta las restricciones cinemáticas asociadas a una mano antropomórfica y el modelo tridimensional generado del objeto en cuestión.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.other Autonomous robots
dc.subject.other Pattern recognition
dc.subject.other Differential evolution algorithm
dc.title Reconstruction and recognition of confusable models using three-dimensional perception
dc.type doctoralThesis
dc.type.review PeerReviewed
dc.subject.eciencia Robótica e Informática Industrial
dc.rights.accessRights openAccess
dc.contributor.departamento Universidad Carlos III de Madrid. Departamento de Ingeniería de Sistemas y Automática
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)


The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record