Sponsor:
The authors would like to acknowledge the financial support from Spanish Government through the projects MAT 2009-14448-C02-01 and 02, MAT2012-38650-C02-01 and 02
The colloid-chemistry control of metallic powders in aqueous slurries is proposed as a way to produce spherical granules of fine titanium particles able to be processed by powder metallurgy (PM) techniques. Significant improvement of sintering behavior is achiThe colloid-chemistry control of metallic powders in aqueous slurries is proposed as a way to produce spherical granules of fine titanium particles able to be processed by powder metallurgy (PM) techniques. Significant improvement of sintering behavior is achieved, leading to high dense parts at reduced sintering temperature and time. Consequently the control of grain growth during sintering was achieved, as well as the oxygen content. This approach can be extended to other strategies for Ti design, such as the homogeneous dispersion of second phases for further control of grain size and modification of properties.[+][-]