Posterior moments of scale parameters in elliptical regression models

e-Archivo Repository

Show simple item record Osiewalski, Jacek Steel, Mark F.J.
dc.contributor.editor Universidad Carlos III de Madrid. Departamento de Economía 2011-04-25T17:44:13Z 2011-04-25T17:44:13Z 1992-02
dc.identifier.issn 2340-5031
dc.description.abstract In the general multivariate elliptical class of data densities we define a scalar precision parameter r through a normalization of the scale matrix V. Using the improper prior on r which preserves the results under Normality for all other parameters and prediction, we consider the posterior moments of r. For the subclass of scale mixtures of Normals we derive the Bayesian counterpart to a sampling theory result concerning uniformly minimum variance unbiased estimation of 7. 2 • If the sampling variance exists, we single out the common variance factor i' as the scalar multiplying V in this sampling variance. Moments of i' are examined for various elliptical subclasses and a sampling theory result regarding its unbiased estimation is mirrored.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.relation.ispartofseries UC3M Working papers. Economics
dc.relation.ispartofseries 92-05
dc.rights Atribución-NoComercial-SinDerivadas 3.0 España
dc.subject.other Multivariate elliptical data densities
dc.subject.other Bayesian analysis
dc.subject.other Unbiased estimation
dc.title Posterior moments of scale parameters in elliptical regression models
dc.type workingPaper
dc.subject.eciencia Economía
dc.rights.accessRights openAccess
 Find Full text

Files in this item

*Click on file's image for preview. (Embargoed files's preview is not supported)

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record