Publication:
Experimental Robot Model Adjustments Based on Force-Torque Sensor Information

dc.affiliation.dptoUC3M. Departamento de Ingeniería de Sistemas y Automáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Laboratorio de Robótica (Robotics Lab)es
dc.contributor.authorMartínez de la Casa Díaz, Santiago
dc.contributor.authorGarcía Haro, Juan Miguel
dc.contributor.authorJardón Huete, Alberto
dc.contributor.authorBalaguer Bernaldo de Quirós, Carlos
dc.date.accessioned2019-02-15T09:05:32Z
dc.date.available2019-02-15T09:05:32Z
dc.date.issued2018-03-11
dc.description.abstractThe computational complexity of humanoid robot balance control is reduced through the application of simplified kinematics and dynamics models. However, these simplifications lead to the introduction of errors that add to other inherent electro-mechanic inaccuracies and affect the robotic system. Linear control systems deal with these inaccuracies if they operate around a specific working point but are less precise if they do not. This work presents a model improvement based on the Linear Inverted Pendulum Model (LIPM) to be applied in a non-linear control system. The aim is to minimize the control error and reduce robot oscillations for multiple working points. The new model, named the Dynamic LIPM (DLIPM), is used to plan the robot behavior with respect to changes in the balance status denoted by the zero moment point (ZMP). Thanks to the use of information from force-torque sensors, an experimental procedure has been applied to characterize the inaccuracies and introduce them into the new model. The experiments consist of balance perturbations similar to those of push-recovery trials, in which step-shaped ZMP variations are produced. The results show that the responses of the robot with respect to balance perturbations are more precise and the mechanical oscillations are reduced without comprising robot dynamicsen
dc.description.sponsorshipThe research leading to these results received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. Fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU.en
dc.format.extent22
dc.format.mimetypeapplication/pdf
dc.identifier.bibliographicCitationMartinez, S., Garcia-Haro, J.M., Victores, J.G., Jardon, A., Balaguer, C. (2018). Experimental Robot Model Adjustments Based on Force–Torque Sensor Information. Sensors, 18 (3), 836.en
dc.identifier.doihttps://www.doi.org/10.3390/s18030836
dc.identifier.issn1424-8220
dc.identifier.publicationissue3
dc.identifier.publicationtitleSensorsen
dc.identifier.publicationvolume18
dc.identifier.urihttps://hdl.handle.net/10016/28072
dc.identifier.uxxiAR/0000021621
dc.language.isoengen
dc.publisherMDPIen
dc.relation.projectIDComunidad de Madrid. S2013/MIT-2748/RoboCity2030-III-CMprojectes
dc.rights© 2018 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaRobótica e Informática Industriales
dc.subject.otherForce-torque sensorsen
dc.subject.otherBalance controlen
dc.subject.otherHumanoid roboten
dc.subject.otherSimplified modelen
dc.titleExperimental Robot Model Adjustments Based on Force-Torque Sensor Informationen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
experimental_sensors_2018.pdf
Size:
3.23 MB
Format:
Adobe Portable Document Format