Publication:
Convolutional neural networks for mechanistic driver detection in atrial fibrillation

Loading...
Thumbnail Image
Identifiers
Publication date
2022-04-02
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
The maintaining and initiating mechanisms of atrial fibrillation (AF) remain controversial. Deep learning is emerging as a powerful tool to better understand AF and improve its treatment, which remains suboptimal. This paper aims to provide a solution to automatically identify rotational activity drivers in endocardial electrograms (EGMs) with convolutional recurrent neural networks (CRNNs). The CRNN model was compared with two other state-of-the-art methods (SimpleCNN and attention-based time-incremental convolutional neural network (ATI-CNN)) for different input signals (unipolar EGMs, bipolar EGMs, and unipolar local activation times), sampling frequencies, and signal lengths. The proposed CRNN obtained a detection score based on the Matthews correlation coefficient of 0.680, an ATI-CNN score of 0.401, and a SimpleCNN score of 0.118, with bipolar EGMs as input signals exhibiting better overall performance. In terms of signal length and sampling frequency, no significant differences were found. The proposed architecture opens the way for new ablation strategies and driver detection methods to better understand the AF problem and its treatment.
Description
Keywords
Atrial fibrillation, Artificial intelligence, Rotors, Arrhythmias, Cardiology, Machine learning
Bibliographic citation
Ríos-Muñoz, G. R., Fernández-Avilés, F. & Arenal, N. (2022). Convolutional Neural Networks for Mechanistic Driver Detection in Atrial Fibrillation. International Journal of Molecular Sciences, 23(8), 4216.