Publication: Critical quantum metrology in fully-connected models: From Heisenberg to Kibble-Zurek scaling
dc.affiliation.dpto | UC3M. Departamento de FÃsica | es |
dc.affiliation.grupoinv | UC3M. Grupo de Investigación: QUEST: Quantum Engineering, Science and Technology | es |
dc.contributor.author | Garbe, Louis | |
dc.contributor.author | Abah, Obinna | |
dc.contributor.author | Felicetti, Simone | |
dc.contributor.author | Puebla Antunes, Ricardo | |
dc.contributor.funder | European Commission | en |
dc.date.accessioned | 2024-02-01T15:18:24Z | |
dc.date.available | 2024-02-01T15:18:24Z | |
dc.date.issued | 2022-07-01 | |
dc.description.abstract | Phase transitions represent a compelling tool for classical and quantum sensing applications. It has been demonstrated that quantum sensors can in principle saturate the Heisenberg scaling, the ultimate precision bound allowed by quantum mechanics, in the limit of large probe number and long measurement time. Due to the critical slowing down, the protocol duration time is of utmost relevance in critical quantum metrology. However, how the long-time limit is reached remains in general an open question. So far, only two dichotomic approaches have been considered, based on either static or dynamical properties of critical quantum systems. Here, we provide a comprehensive analysis of the scaling of the quantum Fisher information for different families of protocols that create a continuous connection between static and dynamical approaches. In particular, we consider fully-connected models, a broad class of quantum critical systems of high experimental relevance. Our analysis unveils the existence of universal precision-scaling regimes. These regimes remain valid even for finite-time protocols and finite-size systems. We also frame these results in a general theoretical perspective, by deriving a precision bound for arbitrary time-dependent quadratic Hamiltonians. | en |
dc.description.sponsorship | This work was supported by the Austrian Academy of Sciences (ÖAW) and by the Austrian Science Fund (FWF) through Grant No. P32299 (PHONED). RP acknowledges support from the European Union's Horizon 2020 FET-Open Project SuperQuLAN (899354). OA acknowledges support from the UK EPSRC EP/S02994X/1 and Newcastle University (Newcastle University Academic Track fellowship). | en |
dc.format.extent | 41 | es |
dc.identifier.bibliographicCitation | Garbe, L., Abah, O., Felicetti, S., & Puebla, R. (2022). Critical quantum metrology with fully-connected models: from Heisenberg to Kibble–Zurek scaling. Quantum science and technology, 7(3), 035010. | en |
dc.identifier.doi | https://doi.org/10.1088/2058-9565/ac6ca5 | |
dc.identifier.issn | 2058-9565 | |
dc.identifier.publicationfirstpage | 1 | es |
dc.identifier.publicationissue | 3 | es |
dc.identifier.publicationlastpage | 41 | es |
dc.identifier.publicationtitle | Quantum Science and Technology | en |
dc.identifier.publicationvolume | 7 | es |
dc.identifier.uri | https://hdl.handle.net/10016/39756 | |
dc.identifier.uxxi | AR/0000030982 | |
dc.language.iso | eng | en |
dc.publisher | IOP Publishing | en |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/899354/SuperQuLAN | en |
dc.rights | © 2022 The Author(s). Published by IOP Publishing Ltd | en |
dc.rights | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. | en |
dc.rights | Atribución 3.0 España | * |
dc.rights.accessRights | open access | en |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject.eciencia | FÃsica | es |
dc.subject.other | Quantum metrology | en |
dc.subject.other | Quantum phase transitions | es |
dc.subject.other | Quantum critical phenomena | en |
dc.subject.other | Kibble-Zurek mechanism | en |
dc.subject.other | Fully-connected models | en |
dc.title | Critical quantum metrology in fully-connected models: From Heisenberg to Kibble-Zurek scaling | en |
dc.type | research article | en |
dc.type.hasVersion | VoR | en |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1