Publication: vrAIn: Deep Learning based Orchestration for Computing and Radio Resources in vRANs
dc.affiliation.dpto | UC3M. Departamento de Ingeniería Telemática | es |
dc.affiliation.grupoinv | UC3M. Grupo de Investigación: Network Technologies | es |
dc.contributor.author | Ayala Romero, José A. | |
dc.contributor.author | García Saavedra, Andrés | |
dc.contributor.author | Gramaglia, Marco | |
dc.contributor.author | Banchs Roca, Albert | |
dc.contributor.author | Costa-Pérez, Xavier | |
dc.contributor.author | Alcaraz, Juan J. | |
dc.contributor.funder | European Commission | en |
dc.date.accessioned | 2022-07-27T12:14:55Z | |
dc.date.available | 2021-02-01T13:10:15Z | |
dc.date.issued | 2022-07-01 | |
dc.description.abstract | The virtualization of radio access networks (vRAN) is the last milestone in the NFV revolution. However, the complexrelationship between computing and radio dynamics make vRAN resource control particularly daunting. We present vrAIn, a resourceorchestrator for vRANs based on deep reinforcement learning. First, we use an autoencoder to project high-dimensional context data(traffic and channel quality patterns) into a latent representation. Then, we use a deep deterministic policy gradient (DDPG) algorithmbased on an actor-critic neural network structure and a classifier to map contexts into resource control decisions.We have evaluated vrAIn experimentally, using an open-source LTE stack over different platforms, and via simulations over aproduction RAN. Our results show that: (i) vrAIn provides savings in computing capacity of up to 30% over CPU-agnostic methods;(ii) it improves the probability of meeting QoS targets by 25% over static policies; (iii) upon computing capacity under-provisioning,vrAIn improves throughput by 25% over state-of-the-art schemes; and (iv) it performs close to an optimal offline oracle. To ourknowledge, this is the first work that thoroughly studies the computational behavior of vRANs and the first approach to a model-freesolution that does not need to assume any particular platform or context. | en |
dc.description.sponsorship | This work was partially supported by the European Commission through Grant No. 856709 (5Growth) and Grant No. 856950 (5G-TOURS); by Science Foundation Ireland (SFI) through Grant No. 17/CDA/4760; and AEI/FEDER through project AIM under Grant No. TEC2016-76465-C2-1-R. Furthermore, the work is closely related to the EU project DAEMON (Grant No. 101017109). | en |
dc.format.extent | 18 | |
dc.identifier.bibliographicCitation | Ayala Romero, J.A., García Saavedra, A., Gramaglia, M., Costa Pérez, X., Banchs, A. y Alcaraz, J.J. vrAIn: Deep Learning based Orchestration for Computing and Radio Resources in vRANs. IEEE Transactions on Mobile Computing, 21(7), July 2022, pp. 2652-2670 | en |
dc.identifier.doi | https://doi.org/10.1109/TMC.2020.3043100 | |
dc.identifier.issn | 1536-1233 | |
dc.identifier.publicationfirstpage | 2652 | |
dc.identifier.publicationissue | 7 | |
dc.identifier.publicationlastpage | 2670 | |
dc.identifier.publicationtitle | IEEE Transactions on Mobile Computing | en |
dc.identifier.publicationvolume | 21 | |
dc.identifier.uri | https://hdl.handle.net/10016/31831 | |
dc.identifier.uxxi | AR/0000026395 | |
dc.language.iso | eng | |
dc.publisher | IEEE | en |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/856950 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/856709 | |
dc.relation.projectID | Gobierno de España. TEC2016-76465-C2-1-R | es |
dc.rights | © 2020 IEEE. | en |
dc.rights.accessRights | open access | en |
dc.subject.eciencia | Telecomunicaciones | es |
dc.subject.other | RAN virtualization | en |
dc.subject.other | Resource management | en |
dc.subject.other | Machine learning | en |
dc.title | vrAIn: Deep Learning based Orchestration for Computing and Radio Resources in vRANs | en |
dc.type | research article | * |
dc.type.hasVersion | AM | * |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1