Publication:
Biodegradable and thermoresponsive micelles of triblock copolymers based on 2-(N,N-dimethylamino)ethyl methacrylate and ε-caprolactone for controlled drug delivery

Loading...
Thumbnail Image
Identifiers
Publication date
2008-08-18
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Amphiphilic triblock copolymers, poly(2-(N,N-dimethylamino)ethyl methacrylate)x-block-poly(caprolactone)-block-poly(2-(N,N-dimethylamino)ethyl methacrylate)x, PDMAEMACo, were synthesized. Polymerization and structural features of the polymers were analyzed by different physicochemical techniques (GPC, ¹H NMR and FTIR). Formation of hydrophobic domains as cores of the micelles was studied by ¹H NMR and further confirmed by fluorescence. Dynamic light scattering measurements showed a monodispersed size distribution only for the copolymer with the lowest degree of polymerization, while increasing the length of PDMAEMA blocks leads to a bimodal size distribution. The micelles showed reversible dispersion/aggregation in response to temperature cycles through an outer polymer shell lower critical solution temperature (LCST) for PDMAEMA at temperatures between 54 and 87 °C. The triblock copolymer micelles were loaded with the sparingly water-soluble anticancer drug, chlorambucil, by a dialysis procedure. The drug release profile monitored by fluorescence showed that the release of chlorambucil from PDMAEMA nanoparticles is controlled by a combined degradation–diffusion mechanism.
Description
Keywords
Block copolymer, Micelles, Temperature sensitivity, Controllable drug release, Chemotherapy
Bibliographic citation
European Polymer Journal, 2008, 44 (11), pp. 3853-3863.