Publication:
Efficient dynamic resampling for dominance-based multiobjective evolutionary optimization

Loading...
Thumbnail Image
Identifiers
Publication date
2017-02-01
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis Online
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Multi-objective optimization problems are often subject to the presence of objectives that require expensive resampling for their computation. This is the case for many robustness metrics, which are frequently used as an additional objective that accounts for the reliability of specific sections of the solution space. Typical robustness measurements use resampling, but the number of samples that constitute a precise dispersion measure has a potentially large impact on the computational cost of an algorithm. This article proposes the integration of dominance based statistical testing methods as part of the selection mechanism of evolutionary multi-objective genetic algorithms with the aim of reducing the number of fitness evaluations. The performance of the approach is tested on five classical benchmark functions integrating it into two well-known algorithms, NSGA-II and SPEA2.
Description
Keywords
Uncertainty, Resampling, Algorithms, Robustness, Evolutionary multi-objective optimization, Portfolio optimization
Bibliographic citation
Alejandro Cervantes, David Quintana & Gustavo Recio. (2017). Efficient dynamic resampling for dominance-based multiobjective evolutionary optimization, Engineering Optimization, 49:2, 311-327