Publication:
Fluid-kinetic model of a propulsive magnetic nozzle

dc.affiliation.dptoUC3M. Departamento de Ingeniería Aeroespaciales
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Equipo de Propulsión Espacial y Plasmas (EP2)es
dc.contributor.authorMerino Martínez, Mario
dc.contributor.authorNuez, Judit
dc.contributor.authorAhedo Galilea, Eduardo Antonio
dc.contributor.funderEuropean Commissionen
dc.contributor.funderAgencia Estatal de Investigación (España)es
dc.date.accessioned2021-11-19T11:39:12Z
dc.date.available2021-11-19T11:39:12Z
dc.date.issued2021-11-03
dc.description.abstractA kinetic-electron, fluid-ion model is used to study the 2D plasma expansion in an axisymmetric magnetic nozzle in the fully-magnetized, cold-ion, collisionless limit. Electrons are found to be subdivided into free, reflected, and doubly-trapped sub-populations. The net charge current and the electrostatic potential fall on each magnetic line are related by the kinetic electron response, and together with the initial profiles of electrostatic potential and electron temperature, determine the electron thermodynamics in the expansion. Results include the evolution of the density, temperature, and anisotropy ratio of each electron sub-population along the expansion. The different contributions of ions and electrons to the generation of magnetic thrust are analyzed for upstream conditions representative of different thruster types. Equivalent polytropic models with the same total potential fall are seen to result in a slower expansion rate, and therefore to underpredict thrust generated up to a fixed section of the magnetic nozzle.en
dc.description.sponsorshipThis project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Project ZARATHUSTRA, Grant Agreement No. 950466). Eduardo Ahedo's work was supported by the ESPEOS project, funded by the Agencia Estatal de Investigación (Spanish National Research Agency), under Grant No. PID2019-108034RB-I00/AEI/10.13039/501100011033.en
dc.format.extent17es
dc.identifier.bibliographicCitationPlasma sources science and technology, 30(11), 115006, Nov. 2021, 17 p.en
dc.identifier.doihttps://doi.org/10.1088/1361-6595/ac2a0b
dc.identifier.issn0963-0252
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue11, 115006es
dc.identifier.publicationlastpage17es
dc.identifier.publicationtitlePlasma Sources Science and Technologyen
dc.identifier.publicationvolume30es
dc.identifier.urihttps://hdl.handle.net/10016/33649
dc.identifier.uxxiAR/0000028511
dc.language.isoengen
dc.publisherIOP Publishing Ltd.en
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/950466/ZARATHUSTRAes
dc.relation.projectIDGobierno de España. PID2019-108034RB-I00en
dc.rights© 2020 The Author(s). Published by IOP Publishing Ltd.en
dc.rightsOriginal content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.en
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.ecienciaAeronáuticaes
dc.subject.ecienciaFísicaes
dc.subject.otherMagnetic nozzleen
dc.subject.otherPlasma propulsionen
dc.subject.otherElectrodeless plasma thrustersen
dc.subject.otherKinetic modelen
dc.subject.otherCollisionless electron coolingen
dc.subject.otherMagnetic thrusten
dc.titleFluid-kinetic model of a propulsive magnetic nozzleen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fluid_PSST_2021.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format