Publication:
Remote optical powering using fiber optics in hazardous environments

dc.affiliation.dptoUC3M. Departamento de Tecnología Electrónicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Displays y Aplicaciones Fotónicases
dc.contributor.authorLópez Cardona, Juan Dayron
dc.contributor.authorVázquez García, María Carmen
dc.contributor.authorSánchez Montero, David Ricardo
dc.contributor.authorContreras Lallana, Pedro
dc.contributor.funderComunidad de Madrides
dc.contributor.funderEuropean Commissionen
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2021-12-10T10:04:18Z
dc.date.available2021-12-10T10:04:18Z
dc.date.issued2018-02-01
dc.description.abstractPotential niches for a power-over-fiber (PoF) technique can be found in hazardous areas that require controlling unauthorized access to risk areas and integration of multiple sensors, in scenarios avoiding electromagnetic interference, and the presence of ignition factors. This paper develops a PoF system that provides galvanic isolation between two ends of a fiber for remotely powering a proximity sensor as a proof of concept of the proposed technology. We analyze scalability issues for remotely powering multiple sensors in a specific application for the hazardous environment. The maximum number of remote sensors that can be optically powered and the limiting factors are also studied; considering different types of multimode optical fibers, span lengths, and wavelengths. We finally address the fiber mode field diameter effect as a factor that limits the maximum power to be injected into the fiber. This analysis shows the advantages of using step-index versus graded-index fibers.en
dc.description.sponsorshipThis work was supported in part by the Spanish Ministerio de Economía, Industria y Competitividad, Comunidad de Madrid and H2020 European Union Programme under Grants TEC2015-63826-C3-2-R and S2013/MIT-2790, in part by FSE, and in part by 5G PPP BlueSpace Project under Grant 762055.en
dc.description.statusPublicadoes
dc.format.extent8
dc.identifier.bibliographicCitationJournal of Lightwave Technology, (Feb. 2018), 36(3), pp.: 748-754.en
dc.identifier.doihttps://doi.org/10.1109/JLT.2017.2776399
dc.identifier.issn0733-8724
dc.identifier.publicationfirstpage748
dc.identifier.publicationissue3
dc.identifier.publicationlastpage754
dc.identifier.publicationtitleJOURNAL OF LIGHTWAVE TECHNOLOGYen
dc.identifier.publicationvolume36
dc.identifier.urihttps://hdl.handle.net/10016/33735
dc.identifier.uxxiAR/0000021065
dc.language.isoengen
dc.publisherIEEEen
dc.relation.projectIDGobierno de España. TEC2015-63826-C3-2-Res
dc.relation.projectIDGobierno de España. S2013/MIT-2790es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/762055/BlueSpaceen
dc.rightsThis work is licensed under a Creative Commons Attribution 3.0 License.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaElectrónicaes
dc.subject.otherGraded-index fiberen
dc.subject.otherMode field diameteren
dc.subject.otherMultimode optical fiberen
dc.subject.otherPower-over-fiber (PoF)en
dc.subject.otherSensor networksen
dc.subject.otherStep-index fiberen
dc.titleRemote optical powering using fiber optics in hazardous environmentsen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remote_JLT_2018.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format