Publication:
Survey of computer vision algorithms and applications for unmanned aerial vehicles

dc.affiliation.dptoUC3M. Departamento de Ingeniería de Sistemas y Automáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Laboratorio de Sistemas Inteligenteses
dc.contributor.authorAl Kaff, Abdulla Hussein Abdulrahman
dc.contributor.authorMartín Gómez, David
dc.contributor.authorGarcía Fernández, Fernando
dc.contributor.authorEscalera Hueso, Arturo de la
dc.contributor.authorArmingol Moreno, José María
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2021-12-13T12:33:09Z
dc.date.available2021-12-13T12:33:09Z
dc.date.issued2018-02
dc.description.abstractThis paper presents a complete review of computer vision algorithms and vision-based intelligent applications, that are developed in the field of the Unmanned Aerial Vehicles (UAVs) in the latest decade. During this time, the evolution of relevant technologies for UAVs; such as component miniaturization, the increase of computational capabilities, and the evolution of computer vision techniques have allowed an important advance in the development of UAVs technologies and applications. Particularly, computer vision technologies integrated in UAVs allow to develop cutting-edge technologies to cope with aerial perception difficulties; such as visual navigation algorithms, obstacle detection and avoidance and aerial decision-making. All these expert technologies have developed a wide spectrum of application for UAVs, beyond the classic military and defense purposes. Unmanned Aerial Vehicles and Computer Vision are common topics in expert systems, so thanks to the recent advances in perception technologies, modern intelligent applications are developed to enhance autonomous UAV positioning, or automatic algorithms to avoid aerial collisions, among others. Then, the presented survey is based on artificial perception applications that represent important advances in the latest years in the expert system field related to the Unmanned Aerial Vehicles. In this paper, the most significant advances in this field are presented, able to solve fundamental technical limitations; such as visual odometry, obstacle detection, mapping and localization, et cetera. Besides, they have been analyzed based on their capabilities and potential utility. Moreover, the applications and UAVs are divided and categorized according to different criteria.en
dc.description.sponsorshipThis research is supported by the Spanish Government through the CICYT projects (TRA2015-63708-R and TRA2013-48314-C3-1-R).en
dc.format.extent17
dc.identifier.bibliographicCitationAl-Kaff, A., Martín, D., García, F., de la Escalera, A. & María Armingol, J. (2018). Survey of computer vision algorithms and applications for unmanned aerial vehicles. Expert Systems with Applications, 92, 447–463.en
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2017.09.033
dc.identifier.issn0957-4174
dc.identifier.publicationfirstpage447
dc.identifier.publicationlastpage463
dc.identifier.publicationtitleExpert Systems with Applicationsen
dc.identifier.publicationvolume92
dc.identifier.urihttps://hdl.handle.net/10016/33749
dc.identifier.uxxiAR/0000020806
dc.language.isoeng
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. TRA2015-63708-Res
dc.relation.projectIDGobierno de España. TRA2013-48314-C3-1-Res
dc.rights© 2017 Elsevier Ltd. All rights reserved.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaInformáticaes
dc.subject.ecienciaRobótica e Informática Industriales
dc.subject.otherUAVen
dc.subject.otherComputer visionen
dc.subject.otherNavigation systemen
dc.subject.otherPose estimationen
dc.subject.otherObstacle avoidanceen
dc.subject.otherVisual servoingen
dc.subject.otherVision-based applicationsen
dc.titleSurvey of computer vision algorithms and applications for unmanned aerial vehiclesen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Survey_ESWA_2018_ps.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format