Publication:
Normal-mode-based theory of collisionless plasma waves

dc.affiliation.dptoUC3M. Departamento de Ingeniería Aeroespaciales
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Equipo de Propulsión Espacial y Plasmas (EP2)es
dc.contributor.authorRamos, Jesús José
dc.contributor.funderComunidad de Madrides
dc.date.accessioned2021-06-04T11:03:08Z
dc.date.available2021-06-04T11:03:08Z
dc.date.issued2019-08
dc.descriptionCorrection to this article published in: In: Journal of Plasma Physics, 86(3), June 2020, 775860301. https://doi.org/10.1017/S0022377820000318
dc.description.abstractThe Van Kampen normal-mode method is applied in a comprehensive study of the linear wave perturbations of a homogeneous, magnetized and finite-temperature plasma, described by the collisionless Vlasov&-Maxwell system in its non-relativistic version. The analysis considers a stable, Maxwellian background, but is otherwise completely general in that it allows for arbitrary wave propagation direction relative to the equilibrium magnetic field, multiple plasma species and general polarization states of the perturbed electromagnetic fields. A convenient formulation is introduced whereby the generator of the time advance is a Hermitian operator, analogous to the Hamiltonian in the Schrödinger equation of quantum mechanics. This guarantees a real frequency spectrum and complete bases of normal modes. Expansions in these normal-mode bases yield immediately the solutions of initial-value problems for general initial conditions. With standard initial conditions and propagation direction parallel to the equilibrium magnetic field, all the familiar results obtained following Landau's Laplace transform approach are recovered. Considering such parallel propagation, the present work shows also explicitly and provides an example of how to construct special initial conditions that result in different, damped but otherwise arbitrarily prescribed time variations of the macroscopic variables. The known dispersion relations for perpendicular propagation are also recovered.en
dc.description.sponsorshipThis work was supported by the PROMETEO project funded by the Comunidad de Madrid, under grant Y2018/NMT-4750.en
dc.format.extent42es
dc.identifier.bibliographicCitationJournal of Plasma Physics, 85(4), 905850401, Aug. 2019, 42 pp.en
dc.identifier.doihttps://doi.org/10.1017/S0022377819000400
dc.identifier.issn0022-3778
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue4, 905850401es
dc.identifier.publicationlastpage42es
dc.identifier.publicationtitleJOURNAL OF PLASMA PHYSICSen
dc.identifier.publicationvolume85es
dc.identifier.urihttps://hdl.handle.net/10016/32832
dc.identifier.uxxiAR/0000024761
dc.language.isoengen
dc.publisherCambridge University Pressen
dc.relation.ispartofhttp://hdl.handle.net/10016/32833
dc.relation.projectIDComunidad de Madrid. Y2018/NMT-4750es
dc.rights© Cambridge University Press 2019en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaAeronáuticaes
dc.subject.ecienciaFísicaes
dc.subject.otherPlasma wavesen
dc.titleNormal-mode-based theory of collisionless plasma wavesen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
normal_JPP_2019_ps.pdf
Size:
423.18 KB
Format:
Adobe Portable Document Format