Publication: Estudio experimental del comportamiento dinámico de un eje giratorio fisurado. Mapas de Poincaré
Loading...
Identifiers
Publication date
2018-06
Defense date
2018-07-05
Authors
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Los ejes son elementos presentes en la mayoría de sistemas mecánicos y su funcionamiento afecta al resto de componentes. Cuando se produce en ellos una fisura aparecen comportamientos indeseados como vibraciones y ruido, que unido a las condiciones de fatiga, pueden llevar a la rotura del eje y al fallo de la máquina en la que trabaja. Por tanto, resulta de interés conocer la propagación de la fisura para poder hacer un mantenimiento preventivo. Además, conviene identificar la velocidad críticas y sus submúltiplos para evitar el fenómeno de resonancia.
Así pues, con el presente trabajo se pretende continuar con estudios anteriores en este campo. En este caso, se abordará usando los Mapas de Poincaré, una representación gráfica que permite conocer la estabilidad de un sistema dinámico.
Concretamente, se han comparado los Mapas de Poincaré para distintas profundidades de fisura y para cada una de ellas en los tres primeros submúltiplos de la velocidad crítica. A continuación, se han analizado para una velocidad constante. Con todo ello se pretende saber si los Mapas de Poincaré permiten identificar la propagación de la fisura. Por último, se han estudiado estas gráficas en las transiciones por los submúltiplos de las frecuencias críticas con el fin de analizar si los Mapas son una posible alternativa para el cálculo de dichas velocidades.
The shafts are elements which are usually used in most mechanical systems and their behavior influences on the other components. When a crack appear, it produces unwanted behaviors such us vibrations and noise, that added to the fatigue conditions, can produce the break of the shaft and the failure of the entire machine where it works. Therefore, it is important to recognize the propagation of the crack in order to do a preventive maintenance. Also, it is important to identify the critical speed and its submultiples to avoid the resonance. Furthermore, the target of this project is to continue with previous works in this field. In this case, will be used the Poincaré Maps, a graphical representation that allows the knowledge of the stability of a dynamic system. Specifically, Poincaré Maps had been analyzed for different deeps of crack and for each one for the first three submultiples of the critical speed. Secondly, they have been studied for a constant speed in order to determine if the Poincaré Maps are useful to recognize the propagation of the crack. Finally, these Maps have been analyzed in the transitions through the submultiples of the critical speeds to know if the Maps are a possible alternative to calculate these speeds.
The shafts are elements which are usually used in most mechanical systems and their behavior influences on the other components. When a crack appear, it produces unwanted behaviors such us vibrations and noise, that added to the fatigue conditions, can produce the break of the shaft and the failure of the entire machine where it works. Therefore, it is important to recognize the propagation of the crack in order to do a preventive maintenance. Also, it is important to identify the critical speed and its submultiples to avoid the resonance. Furthermore, the target of this project is to continue with previous works in this field. In this case, will be used the Poincaré Maps, a graphical representation that allows the knowledge of the stability of a dynamic system. Specifically, Poincaré Maps had been analyzed for different deeps of crack and for each one for the first three submultiples of the critical speed. Secondly, they have been studied for a constant speed in order to determine if the Poincaré Maps are useful to recognize the propagation of the crack. Finally, these Maps have been analyzed in the transitions through the submultiples of the critical speeds to know if the Maps are a possible alternative to calculate these speeds.
Description
Keywords
Mapas de Poincaré, Fisuras, Velocidad crítica, Resonancia, Ejes