Publication:
Connecting the chemical and biological reactivity of epoxides

Loading...
Thumbnail Image
Identifiers
Publication date
2012-11-21
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
The chemical reactivity of the mutagenic epoxides (EP) propylene oxide (PO), 1,2-epoxybutane (1,2-EB), and cis- and trans-2,3-epoxybutane (cis- and trans-2,3-EB) with 4-(p-nitrobenzyl)pyridine (NBP), a bionucleophile model for S(N)2 alkylating agents with high affinity for the guanine-N7 position, was investigated kinetically. It was found that three reactions are involved simultaneously: the alkylation reaction of NBP by EP, which yields the corresponding NBP-EP adducts through an S(N)2 mechanism, and EP and NBP-EP hydrolysis reactions. PO and 1,2-EB were seen to exhibit a higher alkylating potential than cis- and trans-2,3-EB. From a study of the correlations between the chemical reactivity (kinetic parameters) and the biological effectiveness of oxiranes, the following conclusions can be drawn: (i) the hydrolysis reactions of epoxides must be taken into account to understand their bioactivity. (ii) The fraction (f) of the alkylating oxirane that forms the adduct and the adduct life (AL) permit the potential of epoxides as bioactive molecules to be rationalized even semiquantitatively; and (iii) alkylation of DNA by epoxides and the O-6-/N7-guanine adduct ratio are directly related to their mutagenicity in vitro.
Description
Keywords
Alcohols, Adducts, Hydrolysis, Ethers, Post-translational modification
Bibliographic citation
Chemical Research in Toxicology, (2012), 25(12), p.: 2755–2762.