Publication:
Transverse free vibration of resonant nanoplate mass sensors: Identification of an attached point mass

dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Dinámica y Fractura de Elementos Estructuraleses
dc.contributor.authorFernández-Sáez, José
dc.contributor.authorMorassi, Antonino
dc.contributor.authorRubio García, Leonardo
dc.contributor.authorZaera, Ramón
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2022-09-22T12:47:03Z
dc.date.available2022-09-22T12:47:03Z
dc.date.issued2019-01-01
dc.description.abstractIn this paper we analyse for the first time the bending vibration of a nanoplate with an attached mass using the strain gradient elasticity theory for homogeneous Lame material, under Kirchhoff-Love's kinematical assumptions. The exact eigenvalues of the nanoplate vibrating with an attached mass are obtained for a general case, and an approximate closed form expression is provided if the intensity of the mass is small with respect to the total mass of the nanoplate. The inverse problem of identifying a point mass attached on a simply supported rectangular nanoplate from a selected minimal set of resonant frequency data is also considered. We show that if the point mass is small, then the position of the point mass and mass size can be determined by means of closed form expressions in terms of the changes induced by the point mass on the first three resonant frequencies. The identification procedure has been tested on an extended series of numerical simulations, varying the scale parameter of the nanoplate's material and the position and size of the point mass.en
dc.description.sponsorshipThe authors from University Carlos III of Madrid wish to acknowledge the Ministerio de Economía y Competitividad de España for the financial support, under grants number DPI2014-57989-P and DPI2013-45406-P. A. Morassi gratefully acknowledges the financial support of the National Research Project PRIN 2015TTJN95 Identification and monitoring of complex structural systems.en
dc.description.statusPublicadoes
dc.format.extent8
dc.identifier.bibliographicCitationInternational Journal of Mechanical Sciences, v. 150, pp.: 217-225.en
dc.identifier.doihttps://doi.org/10.1016/j.ijmecsci.2018.09.055
dc.identifier.issn0020-7403
dc.identifier.publicationfirstpage217
dc.identifier.publicationlastpage225
dc.identifier.publicationtitleINTERNATIONAL JOURNAL OF MECHANICAL SCIENCESen
dc.identifier.publicationvolume150
dc.identifier.urihttps://hdl.handle.net/10016/35769
dc.identifier.uxxiAR/0000023219
dc.language.isoengen
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. DPI2013-45406-Pes
dc.relation.projectIDGobierno de España. DPI2014-57989-Pes
dc.rights© 2018 Elsevier Ltd. All rights reserved.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaFísicaes
dc.subject.otherStrain gradient theoryen
dc.subject.otherNanoplates with attached massen
dc.subject.otherNanosensorsen
dc.subject.otherTransverse vibrationen
dc.subject.otherMass identificationen
dc.subject.otherInverse problemsen
dc.titleTransverse free vibration of resonant nanoplate mass sensors: Identification of an attached point massen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
transverse_IJMS_2019_ps.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format