Publication:
Theoretical and numerical analysis of the evaporation of mono and multicomponent single fuel droplets

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Mecánica de Fluidoses
dc.contributor.authorMillán Merino, Alejandro
dc.contributor.authorFernández Tarrazo, Eduardo Antonio
dc.contributor.authorSánchez Sanz, Mario
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2022-01-12T11:34:21Z
dc.date.available2022-01-12T11:34:21Z
dc.date.issued2021-03-10
dc.description.abstractSingle fuel droplet vaporization, with special attention to the case of ethanol, is considered in this study. First, we showed, using an order-of-magnitude analysis and detailed unsteady simulations, that the commonly used quasi-steady assumption is not suitable for an accurate description of the liquid phase during the evaporation process. Second, we demonstrated that an increase in the relative importance of radiation explains the departures of the evaporation rate from the d2-law observed experimentally when sufficiently large droplets – initial radius above 0.25 mm – evaporated in ambient temperatures around 800 K. The multicomponent formulation included here, in which the physical properties of both liquid and gas phases depend on the concentration of the different species involved, was validated by comparing our numerical results with experimental data of ethanol, n-heptane, ethanol–water and n-dodecane–n-hexadecane droplets available in the literature. Because of its technological relevance, we dedicated special attention to the effect of the droplet water content and ambient humidity on the evaporation time of ethanol droplets. Our computations showed higher vaporization rates with increasing ambient humidity as a consequence of the extra heat generated during the condensation of moisture on the droplet surface.en
dc.description.sponsorshipThe authors express their gratitude to Professor F. Williams in the conception and guidance of this work, in particular, and all the ongoing work on ethanol droplet vaporization and combustion. This work was supported by the project ENE2015-65852-C2-1-R (MINECO/FEDER,UE). The authors are grateful for the comments and suggestions offered by an anonymous referee during the revision of the paper.en
dc.format.extent29
dc.identifier.bibliographicCitationMillán-Merino, A., Fernández-Tarrazo, E. & Sánchez-Sanz, M. (2021). Theoretical and numerical analysis of the evaporation of mono- and multicomponent single fuel droplets. Journal of Fluid Mechanics, 910, A11.en
dc.identifier.doihttps://doi.org/10.1017/jfm.2020.950
dc.identifier.issn0022-1120
dc.identifier.publicationfirstpageA11-1
dc.identifier.publicationlastpageA11-29
dc.identifier.publicationtitleJournal of Fluid Mechanicsen
dc.identifier.publicationvolume910
dc.identifier.urihttps://hdl.handle.net/10016/33867
dc.identifier.uxxiAR/0000028980
dc.language.isoengen
dc.publisherOxford University Pressen
dc.relation.projectIDGobierno de España. ENE2015-65852-C2-1-Res
dc.relation.projectIDAT-2021
dc.rights© The Author(s), 2021.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaCombustibles Fósileses
dc.subject.ecienciaFísicaes
dc.subject.ecienciaFusiónes
dc.subject.ecienciaQuímicaes
dc.subject.otherDropsen
dc.subject.otherCondensation/evaporationen
dc.subject.otherMultiphase flowen
dc.titleTheoretical and numerical analysis of the evaporation of mono and multicomponent single fuel dropletsen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Theoretical_JFM_2021.pdf
Size:
2.87 MB
Format:
Adobe Portable Document Format