Publication:
Economic analysis of a zero-water solar power plant for energy security

Loading...
Thumbnail Image
Identifiers
Publication date
2021-10-02
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Water dependency of power plants undermines energy security by making power generation susceptible to water scarcity. This study evaluates the economic performance of a novel dry-cooling system for a water-independent solar power plant. The proposed cooling system is based on the concept of earth-air heat exchangers, approaching zero environmental impact. The viability of the proposed design is discussed based on both costs and benefits, and it is compared to both conventional dry-and wet-cooling systems. The installation costs of the plant are found to be EUR 13,728/kW, resulting in the substantial levelized cost of electricity of EUR 505.97/MWh. The net present value of the studied design assuming a water-cost saving of EUR 1/m3 is found to be MEUR - 139.59. Significantly higher water prices in the future might eventually make the proposed system economically attractive when compared to water-cooling systems. However, the new system would require drastic modifications to become more attractive when compared to existing dry-cooling systems. Specific possibilities to improve it for zero-water use in thermoelectric power plants are further discussed.
Description
Keywords
Dry cooling, Economic analysis, Energy security, Solar power plants, Water scarcity, Zero-Water plants
Bibliographic citation
de la Rocha Camba, E., & Petrakopoulou, F. (2021). Economic Analysis of a Zero-Water Solar Power Plant for Energy Security. In Applied Sciences (Vol. 11, Issue 20, p. 9639). MDPI AG.