Publication:
Scene understanding for autonomous robots operating in indoor environments

Loading...
Thumbnail Image
Identifiers
Publication date
2021-04
Defense date
2021-06-14
Journal Title
Journal ISSN
Volume Title
Publisher
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
The idea of having robots among us is not new. Great efforts are continually made to replicate human intelligence, with the vision of having robots performing different activities, including hazardous, repetitive, and tedious tasks. Research has demonstrated that robots are good at many tasks that are hard for us, mainly in terms of precision, efficiency, and speed. However, there are some tasks that humans do without much effort that are challenging for robots. Especially robots in domestic environments are far from satisfactorily fulfilling some tasks, mainly because these environments are unstructured, cluttered, and with a variety of environmental conditions to control. This thesis addresses the problem of scene understanding in the context of autonomous robots operating in everyday human environments. Furthermore, this thesis is developed under the HEROITEA research project that aims to develop a robot system to help elderly people in domestic environments as an assistant. Our main objective is to develop different methods that allow robots to acquire more information from the environment to progressively build knowledge that allows them to improve the performance on high-level robotic tasks. In this way, scene understanding is a broad research topic, and it is considered a complex task due to the multiple sub-tasks that are involved. In that context, in this thesis, we focus on three sub-tasks: object detection, scene recognition, and semantic segmentation of the environment. Firstly, we implement methods to recognize objects considering real indoor environments. We applied machine learning techniques incorporating uncertainties and more modern techniques based on deep learning. Besides, apart from detecting objects, it is essential to comprehend the scene where they can occur. For this reason, we propose an approach for scene recognition that considers the influence of the detected objects in the prediction process. We demonstrate that the exiting objects and their relationships can improve the inference about the scene class. We also consider that a scene recognition model can benefit from the advantages of other models. We propose a multi-classifier model for scene recognition based on weighted voting schemes. The experiments carried out in real-world indoor environments demonstrate that the adequate combination of independent classifiers allows obtaining a more robust and precise model for scene recognition. Moreover, to increase the understanding of a robot about its surroundings, we propose a new division of the environment based on regions to build a useful representation of the environment. Object and scene information is integrated into a probabilistic fashion generating a semantic map of the environment containing meaningful regions within each room. The proposed system has been assessed on simulated and real-world domestic scenarios, demonstrating its ability to generate consistent environment representations. Lastly, full knowledge of the environment can enhance more complex robotic tasks; that is why in this thesis, we try to study how a complete knowledge of the environment influences the robot’s performance in high-level tasks. To do so, we select an essential task, which is searching for objects. This mundane task can be considered a precondition to perform many complex robotic tasks such as fetching and carrying, manipulation, user requirements, among others. The execution of these activities by service robots needs full knowledge of the environment to perform each task efficiently. In this thesis, we propose two searching strategies that consider prior information, semantic representation of the environment, and the relationships between known objects and the type of scene. All our developments are evaluated in simulated and real-world environments, integrated with other systems, and operating in real platforms, demonstrating their feasibility to implement in real scenarios, and in some cases outperforming other approaches. We also demonstrate how our representation of the environment can boost the performance of more complex robotic tasks compared to more standard environmental representations.
La idea de tener robots entre nosotros no es nueva. Continuamente se realizan grandes esfuerzos para replicar la inteligencia humana, con la visión de tener robots que realicen diferentes actividades, incluidas tareas peligrosas, repetitivas y tediosas. La investigación ha demostrado que los robots son buenos en muchas tareas que resultan difíciles para nosotros, principalmente en términos de precisión, eficiencia y velocidad. Sin embargo, existen tareas que los humanos realizamos sin mucho esfuerzo y que son un desafío para los robots. Especialmente, los robots en entornos domésticos están lejos de cumplir satisfactoriamente algunas tareas, principalmente porque estos entornos no son estructurados, pueden estar desordenados y cuentan con una gran variedad de condiciones ambientales que controlar. Esta tesis aborda el problema de la comprensión de la escena en el contexto de robots autónomos que operan en entornos humanos cotidianos. Asimismo, esta tesis se desarrolla en el marco del proyecto de investigación HEROITEA que tiene como objetivo desarrollar un sistema robótico que funcione como asistente para ayudar a personas mayores en entornos domésticos. Nuestro principal objetivo es desarrollar diferentes métodos que permitan a los robots adquirir más información del entorno a fin de construir progresivamente un conocimiento que les permita mejorar su desempeño en tareas robóticas más complejas. En este sentido, la comprensión de escenas es un tema de investigación amplio, y se considera una tarea compleja debido a las múltiples subtareas involucradas. En esta tesis nos enfocamos específicamente en tres subtareas: detección de objetos, reconocimiento de escenas y etiquetado semántico del entorno. Por un lado, implementamos métodos para el reconocimiento de objectos considerando entornos interiores reales. Aplicamos técnicas de aprendizaje automático incorporando incertidumbres y técnicas más modernas basadas en aprendizaje profundo. Además, aparte de detectar objetos, es fundamental comprender la escena donde estos se encuentran. Por esta razón, proponemos un modelo para el reconocimiento de escenas que considera la influencia de los objetos detectados en el proceso de predicción. Demostramos que los objetos existentes y sus relaciones pueden mejorar el proceso de inferencia de la categoría de la escena. También consideramos que un modelo de reconocimiento de escenas puede beneficiarse de las ventajas de otros modelos. Por ello, proponemos un multiclasificador para el reconocimiento de escenas basado en esquemas de votación ponderados. Los experimentos llevados a cabo en entornos interiores reales demuestran que la combinación adecuada de clasificadores independientes permite obtener un modelo más robusto y preciso para el reconocimiento de escenas. Adicionalmente, para aumentar la comprensión de un robot acerca de su entorno, proponemos una nueva división del entorno basada en regiones a fin de construir una representación útil del entorno. La información de objetos y de la escena se integra de forma probabilística generando un mapa semántico que contiene regiones significativas dentro de cada habitación. El sistema propuesto ha sido evaluado en entornos domésticos simulados y reales, demostrando su capacidad para generar representaciones consistentes del entorno. Por otro lado, el conocimiento integral del entorno puede mejorar tareas robóticas más complejas; es por ello que en esta tesis analizamos cómo el conocimiento completo del entorno influye en el desempeño del robot en tareas de alto nivel. Para ello, seleccionamos una tarea fundamental, que es la búsqueda de objetos. Esta tarea mundana puede considerarse una condición previa para realizar diversas tareas robóticas complejas, como transportar objetos, tareas de manipulación, atender requerimientos del usuario, entre otras. La ejecución de estas actividades por parte de robots de servicio requiere un conocimiento profundo del entorno para realizar cada tarea de manera eficiente. En esta tesis proponemos dos estrategias de búsqueda de objetos que consideran información previa, la representación semántica del entorno, las relaciones entre los objetos conocidos y el tipo de escena. Todos nuestros desarrollos son evaluados en entornos simulados y reales, integrados con otros sistemas y operando en plataformas reales, demostrando su viabilidad de ser implementados en escenarios reales y, en algunos casos, superando a otros enfoques. También demostramos cómo nuestra representación del entorno puede mejorar el desempeño de tareas robóticas más complejas en comparación con representaciones del entorno más tradicionales.
Description
Mención Internacional en el título de doctor
Keywords
Scene understanding, Autonomous robots, Object recognition, Scene recognition, Searching strategies, Semantic labeling
Bibliographic citation
Collections