Publication:
Analysis of Alfven eigenmode destabilization by energetic particles in Large Helical Device using a Landau-closure model

dc.affiliation.dptoUC3M. Departamento de Físicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Física de Plasmases
dc.contributor.authorVarela, Jacobo
dc.contributor.authorSpong, Donald
dc.contributor.authorGarcía Gonzalo, Luis
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2021-05-07T08:43:36Z
dc.date.available2021-05-07T08:43:36Z
dc.date.issued2017-04
dc.description.abstractEnergetic particle populations in nuclear fusion experiments can destabilize the Alfven Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfven continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects using a closure relation. We apply the model to study the Alfven mode stability in the inward-shifted configurations of the Large Helical Device (LHD), performing a parametric analysis of the energetic particle beta(beta(f)) in a range of realistic values, the ratios of the energetic particle thermal/Alfven velocities (V-th/V-A0), the magnetic Lundquist numbers (S) and the toroidal modes (n). The n = 1 and n = 2 TAEs are destabilized, although the n = 3 and n = 4 TAEs are weakly perturbed. The most unstable configurations are associated with the density gradients of energetic particles in the plasma core: the TAEs are destabilized, even for small energetic particle populations, if their thermal velocity is lower than 0.4 times the Alfven velocity. The frequency range of MHD bursts measured in the LHD are 50-70 kHz for the n = 1 and 60-80 kHz for the n = 2 TAE, which is consistent with the model predictions.en
dc.description.sponsorshipThis material is based on work supported both by the U.S. Department of Energy and the Office of Science, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The research was sponsored in part by the Ministerio de Economia y Competitividad of Spain under project no. ENE2015-68265-P. We also want to acknowledge the LHD group at NIFS for providing us with the VMEC equilibria, and useful interactions with Y. Todo and M. Osakabe.en
dc.format.extent13
dc.identifier.bibliographicCitationVarela, J., Spong, D. & Garcia, L. (2017). Analysis of Alfvén eigenmode destabilization by energetic particles in Large Helical Device using a Landau-closure model. Nuclear Fusion, 57(4), 046018.en
dc.identifier.doihttps://doi.org/10.1088/1741-4326/aa5d04
dc.identifier.issn0029-5515
dc.identifier.publicationfirstpage046018
dc.identifier.publicationissue4
dc.identifier.publicationtitleNuclear Fusionen
dc.identifier.publicationvolume57
dc.identifier.urihttps://hdl.handle.net/10016/32560
dc.identifier.uxxiAR/0000020346
dc.language.isoeng
dc.publisherIOP Publishingen
dc.relation.projectIDGobierno de España. ENE2015-68265-Pes
dc.rights© 2017 IAEA, Viennaen
dc.rights.accessRightsopen access
dc.subject.ecienciaFísicaes
dc.subject.otherStellaratoren
dc.subject.otherLHDen
dc.subject.otherMHDen
dc.subject.otherAlfven eigenmodesen
dc.subject.otherEnergetic particlesen
dc.titleAnalysis of Alfven eigenmode destabilization by energetic particles in Large Helical Device using a Landau-closure modelen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alfven_NF_2017_ps.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format