Publication:
Characterization of TiO2 nanoparticles fluidization using X-ray imaging and pressure signals

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Tecnologías Apropiadas para el Desarrollo Sosteniblees
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Ingeniería de Sistemas Energéticoses
dc.contributor.authorGómez Hernández, Jesús
dc.contributor.authorSánchez Delgado, Sergio
dc.contributor.authorWagner, Evert
dc.contributor.authorMudde, Robert F.
dc.contributor.authorVan Ommen, J Ruud
dc.date.accessioned2021-04-08T10:43:53Z
dc.date.available2021-04-08T10:43:53Z
dc.date.issued2017-07-01
dc.description.abstractThe fluidization of TiO2-P25 nanoparticles is characterized by studying the X-ray attenuation through the bed and the dynamic response of pressure fluctuations to the influence of the gas velocity. The X-ray results are based on a flat detector capable of measuring a 2D projection of the column from a height of 3 cm above the distributor to the freeboard. Pressure fluctuation signals are analyzed in the time and frequency domain. The strong influence of hysteresis when increasing or decreasing the gas flow is used in the experiments to compare a well fluidized state to channels formation. Thus, two experimental procedures were carried out changing the gas velocity. First, the gas flow is decreased changing from fully fluidized to packed bed. In the second type of tests, the gas velocity is increased from packed bed to well fluidized. The use of Digital Image Analysis (DIA) techniques to study the Xray images show the homogeneous distribution of solids within the bed when the gas velocity is decreased. In these tests, a smooth fluidization is found up to a gas velocity of 3 cm/s, while higher gas flows change the bed state to vigorous fluidization. Pressure signals revealed that Baskakov's frequency can be used to determine the regime of the bed, smooth or vigorous bubbling. Tests with poor fluidization show that the formation of channels modifies the bed structure, hindering to reach the fluidization quality of well fluidized tests for the same experimental conditions.en
dc.format.extent9
dc.identifier.bibliographicCitationGómez-Hernández, J., Sánchez-Delgado, S., Wagner, E., Mudde, R. F. & van Ommen, J. R. (2017). Characterization of TiO2 nanoparticles fluidization using X-ray imaging and pressure signals. Powder Technology, 316, pp. 446–454.en
dc.identifier.doihttps://doi.org/10.1016/j.powtec.2016.11.068
dc.identifier.issn0032-5910
dc.identifier.publicationfirstpage446
dc.identifier.publicationlastpage454
dc.identifier.publicationtitlePowder Technologyen
dc.identifier.publicationvolume316
dc.identifier.urihttps://hdl.handle.net/10016/32313
dc.identifier.uxxiAR/0000020167
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2016 Elsevier B.V.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaMaterialesen
dc.subject.otherFluidized beden
dc.subject.otherNanoparticlesen
dc.subject.otherX-ray imagingen
dc.subject.otherPressure fluctuationsen
dc.subject.otherHysteresisen
dc.subject.otherChannelsen
dc.titleCharacterization of TiO2 nanoparticles fluidization using X-ray imaging and pressure signalsen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Characterization_PT_2017_ps.pdf
Size:
621.83 KB
Format:
Adobe Portable Document Format