Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics

Thumbnail Image
Publication date
Defense date
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key problems in Biology and in other disciplines.
42 pages, 26 figures.-- PACS nrs.: 02.50.Le; 05.40.-a; 87.23.Ge; 87.23.Kg; 89.65.-s; 89.75.Fb.-- MSC2000 codes: 91A22; 91A43; 92D15.
ArXiv pre-print available at:
Final publisher version available Open Access at:
Evolutionary games, Replicator dynamics, Mean-field, Fluctuations, Spatial structure, Network reciprocity, Emergence of cooperation
Bibliographic citation
Physics of Life Reviews, 2009, vol. 6, n. 4, p. 208-249