Publication: Coverage mission for UAVs using differential evolution and fast marching square methods
dc.affiliation.dpto | UC3M. Departamento de Ingeniería de Sistemas y Automática | es |
dc.affiliation.grupoinv | UC3M. Grupo de Investigación: Laboratorio de Robótica (Robotics Lab) | es |
dc.contributor.author | González Pérez, Verónica | |
dc.contributor.author | Monje Micharet, Concepción Alicia | |
dc.contributor.author | Garrido Bullón, Luis Santiago | |
dc.contributor.author | Moreno Lorente, Luis Enrique | |
dc.contributor.author | Balaguer Bernaldo de Quirós, Carlos | |
dc.contributor.funder | Comunidad de Madrid | es |
dc.date.accessioned | 2022-01-19T10:44:15Z | |
dc.date.available | 2022-01-19T10:44:15Z | |
dc.date.issued | 2020-02-01 | |
dc.description.abstract | This research presents a novel approach for missions of coverage path planning (CPP) carried out by unmanned aerial vehicles (UAVs) in a three-dimensional environment. These missions are focused on path planning to cover a certain area in an environment in order to carry out tracking, search, or rescue tasks. The methodology followed uses an optimization process based on the differential evolution (DE) algorithm in combination with the Fast Marching Square (FM2) planner. The DE algorithm evaluates a cost function to determine what the zigzag path with the minimum cost is, according to the steering angle of the zigzag bands (alfa). This optimization process allows achieving the most optimal zigzag path in terms of distance traveled by the UAV to cover the whole area. Then, the FM2 method is applied to generate the final path according to the steering angle of the zigzag bands resulting from the DE algorithm. The approach generates a feasible path free from obstacles, keeping a fixed altitude flight over the ground. The flight level, smoothness, and safety of the path can be modified by two adjustment parameters included in our approach. Simulated experiments carried out in this work demonstrate that the proposed approach generates the most optimal zigzag path in terms of distance, safety, and smoothness to cover a certain whole area, keeping a determined flight level with successful results. | en |
dc.description.sponsorship | This work was supported by the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU. | en |
dc.format.extent | 12 | |
dc.identifier.bibliographicCitation | Gonzalez, V., Monje, C. A., Garrido, S., Moreno, L. & Balaguer, C. (2020). Coverage Mission for UAVs Using Differential Evolution and Fast Marching Square Methods. IEEE Aerospace and Electronic Systems Magazine, 35(2), 18–29. | en |
dc.identifier.doi | https://doi.org/10.1109/MAES.2020.2966317 | |
dc.identifier.issn | 0885-8985 | |
dc.identifier.publicationfirstpage | 18 | |
dc.identifier.publicationissue | 2 | |
dc.identifier.publicationlastpage | 29 | |
dc.identifier.publicationtitle | IEEE Aerospace and Electronic Systems Magazine | en |
dc.identifier.publicationvolume | 35 | |
dc.identifier.uri | https://hdl.handle.net/10016/33911 | |
dc.identifier.uxxi | AR/0000025566 | |
dc.language.iso | eng | en |
dc.publisher | IEEE | en |
dc.relation.projectID | Comunidad de Madrid. S2013/MIT-2748 | es |
dc.rights | © 2020, IEEE. | en |
dc.rights.accessRights | open access | en |
dc.subject.eciencia | Robótica e Informática Industrial | es |
dc.subject.other | Heuristic algorithms | en |
dc.subject.other | Surface treatment | en |
dc.subject.other | Kinematics | en |
dc.subject.other | Trajectory | en |
dc.subject.other | Cameras | en |
dc.subject.other | Task analysis | en |
dc.subject.other | Unmanned aerial vehicles | en |
dc.title | Coverage mission for UAVs using differential evolution and fast marching square methods | en |
dc.type | research article | * |
dc.type.hasVersion | AM | * |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1