Publication:
Continuous time random walks in periodic systems: fluid limit and fractional differential equations on the circle

dc.affiliation.dptoUC3M. Departamento de Físicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Física de Plasmases
dc.contributor.authorCalvo, Iván
dc.contributor.authorCarreras, Benjamín A.
dc.contributor.authorSánchez, Raúl
dc.contributor.authorVan Milligen, Boudewijn Ph.
dc.date.accessioned2010-06-16T09:08:52Z
dc.date.available2010-06-16T09:08:52Z
dc.date.issued2007-11-09
dc.description12 pages, 1 figure.-- PACS nrs.: 05.40.Fb, 02.50.Ey, 05.60.Cd, 05.10.Gg.-- ArXiv preprint available at: http://arxiv.org/abs/0708.3213
dc.description.abstractIn this paper, the continuous time random walk on the circle is studied. We derive the corresponding generalized master equation and discuss the effects of topology, especially important when Lévy flights are allowed. Then, we work out the fluid limit equation, formulated in terms of the periodic version of the fractional Riemann–Liouville operators, for which we provide explicit expressions. Finally, we compute the propagator in some simple cases. The analysis presented herein should be relevant when investigating anomalous transport phenomena in systems with periodic dimensions.
dc.description.sponsorshipResearch sponsored by DGICYT (Dirección General de Investigaciones Científicas y Tecnológicas) of Spain under Project No. ENE2004-04319. Part of this research was sponsored by the Laboratory Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract number DE-AC05-00OR22725.
dc.description.statusPublicado
dc.format.mimetypeapplication/pdf
dc.identifier.bibliographicCitationJ. Phys. A: Math. Theor. 40, 13511 (2009)
dc.identifier.bibliographicCitationJournal of Physics A: Mathematical and Theoretical, 2009, vol. 40, n. 45, id 13511
dc.identifier.doi10.1088/1751-8113/40/45/002
dc.identifier.issn1751-8113
dc.identifier.urihttps://hdl.handle.net/10016/8898
dc.language.isoeng
dc.publisherInstitute of Physics
dc.relation.publisherversionhttp://dx.doi.org/10.1088/1751-8113/40/45/002
dc.rights© Institute of Physics
dc.rights.accessRightsopen access
dc.subject.ecienciaFísica
dc.subject.ecienciaFusión
dc.subject.other[PACS] Random walks and Levy flights
dc.subject.other[PACS] Stochastic processes
dc.subject.other[PACS] Classical transport
dc.subject.other[PACS] Stochastic analysis methods (Fokker-Planck, Langevin, etc.)
dc.titleContinuous time random walks in periodic systems: fluid limit and fractional differential equations on the circle
dc.typeresearch article*
dc.type.reviewPeerReviewed
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
continuous_sanchez_jpa_2007_ps.pdf
Size:
204.43 KB
Format:
Adobe Portable Document Format
Description:
postprint version