Publication:
Subwavelength multiple topological interface states in one-dimensional labyrinthine acoustic metamaterials

dc.affiliation.dptoUC3M. Departamento de Físicaes
dc.contributor.authorZhang, Zhiwang
dc.contributor.authorCheng, Ying
dc.contributor.authorLiu, Xiaojun
dc.contributor.authorChristensen, Johan
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.contributor.funderEuropean Commissionen
dc.date.accessioned2020-12-15T10:35:15Z
dc.date.available2020-12-15T10:35:15Z
dc.date.issued2019-06-01
dc.description.abstractAcoustic analogies of topological insulators reside at the frontier of ongoing metamaterials research. Of particular interest are the topological interface states that are determined by the Zak phase, which is the geometric phase characterizing the topological property of the bands in one-dimensional systems. Here we design double-channel Mie resonators based on the so-called labyrinth acoustic metamaterials, which can be considered equivalent to a ultraslow medium of large refractive index, inevitably containing structural features on a subwavelength scale. The metamolecule containing two cells is engineered to host the degenerated states through a zone-folding mechanism, whereupon the Zak phase transition takes place when the interval between two cells changes from shrunk to expanded. Furthermore, the topological interface state displays strong robustness against randomly introduced perturbations whose acoustic intensity is enhanced by nearly a factor1600 in comparison to an ordinary waveguide.en
dc.description.sponsorshipThis work was supported by National Key R&D Program of China (2017YFA0303702), NSFC (11834008, 11874215, 11674172, and 11574148), Jiangsu Provincial NSF (BK20160018), the Fundamental Research Funds for the Central Universities (020414380001) and Nanjing University Innovation and Creative Program for PhD candidate (CXCY17-11). Z.Z. acknowledges the support from the China Scholarship Council. J.C. acknowledges the support from the European Research Council (ERC) through the Starting Grant No. 714577 PHONOMETA and from the MINECO through a Ramón y Cajal grant (Grant No. RYC-2015-17156).en
dc.description.statusPublicadoes
dc.format.extent9
dc.identifier.bibliographicCitationPhysical Review B, (2019), 99(22), 224104, [9] p.en
dc.identifier.doihttps://doi.org/10.1103/PhysRevB.99.224104
dc.identifier.issn1098-0121
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue22, 224104
dc.identifier.publicationlastpage9
dc.identifier.publicationtitlePHYSICAL REVIEW Ben
dc.identifier.publicationvolume99
dc.identifier.urihttps://hdl.handle.net/10016/31597
dc.identifier.uxxiAR/0000025118
dc.language.isoengen
dc.publisherAmerican Physical Societyen
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/714577/PHONOMETAen
dc.relation.projectIDGobierno de España. RYC-2015-17156es
dc.rights©2019 American Physical Society.en
dc.rights.accessRightsopen accessen
dc.subject.ecienciaFísicaes
dc.subject.otherAcoustic metamaterialsen
dc.subject.otherAcoustic wave phenomenaen
dc.subject.otherTopological insulatorsen
dc.subject.otherBloch-Floquet theoremen
dc.titleSubwavelength multiple topological interface states in one-dimensional labyrinthine acoustic metamaterialsen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
subwavelength-multiple_PRB_2019.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format