Publication:
Ergodicity of the Wang-Swendsen-Kotecký algorithm on several classes of lattices on the torus

dc.affiliation.dptoUC3M. Departamento de Matemáticases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Modelización, Simulación Numérica y Matemática Industriales
dc.contributor.authorSalas Martínez, Jesús
dc.contributor.funderComunidad de Madrides
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.contributor.funderAgencia Estatal de Investigación (España)es
dc.contributor.funderUniversidad Carlos III de Madrides
dc.date.accessioned2022-11-07T10:21:02Z
dc.date.available2023-10-05T23:00:05Z
dc.date.issued2022-10-05
dc.description.abstractWe prove the ergodicity of the Wang-Swendsen-Kotecký (WSK) algorithm for the zero-temperature q-state Potts antiferromagnet on several classes of lattices on the torus. In particular, the WSK algorithm is ergodic for q 4 on any quadrangulation of the torus of girth 4. It is also ergodic for q 5 (resp. q 3) on any Eulerian triangulation of the torus such that one sublattice consists of degree-4 vertices while the other two sublattices induce a quadrangulation of girth 4 (resp. a bipartite quadrangulation) of the torus. These classes include many lattices of interest in statistical mechanics.en
dc.description.sponsorshipWe warmly thank Jesper Jacobsen and Bojan Mohar for a careful reading of early drafts of the manuscript, and correspondence. The authors research was supported in part by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER) through Grant No. FIS2017-84440-C2-2-P, by Grant No. PID2020-116567GBC22 AEI/10.13039/501100011033, by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation), and by UK Engineering and Physical Sciences Research Council Grant EP/N025636/1.en
dc.format.extent22
dc.identifier.bibliographicCitationSalas, J. & Sokal, A. D. (2022). Ergodicity of the Wang–Swendsen–Kotecký algorithm on several classes of lattices on the torus. Journal of Physics A: Mathematical and Theoretical, 55(41), 415004.en
dc.identifier.doi10.1088/1751-8121/ac92ae
dc.identifier.publicationfirstpage1
dc.identifier.publicationlastpage22
dc.identifier.publicationtitleJournal of Physics A: Mathematical and Theoreticalen
dc.identifier.publicationvolume55
dc.identifier.urihttps://hdl.handle.net/10016/35976
dc.identifier.uxxiAR/0000031305
dc.language.isoeng
dc.publisherIOP Publisingen
dc.relation.projectIDGobierno de España. FIS2017-84440-C2-2-es
dc.relation.projectIDGobierno de España. PID2020-116567GBC22 AEI/10.13039/501100011033es
dc.relation.projectIDUniversidad Carlos III de Madrid. EPUC3M23es
dc.relation.projectIDComunidad de Madrid. V PRICITes
dc.rights© 2022 IOP Publishing Ltden
dc.rights.accessRightsopen accessen
dc.subject.ecienciaFísicaes
dc.subject.otherEulerian triangulationsen
dc.subject.otherQuadrangulationsen
dc.subject.otherTorusen
dc.subject.otherKempe chainsen
dc.subject.otherAntiferromagnetic potts modelen
dc.subject.otherWang-Swendsen-Kotecký algorithmen
dc.subject.otherErgodicityen
dc.titleErgodicity of the Wang-Swendsen-Kotecký algorithm on several classes of lattices on the torusen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergodicity_Salas_JOPAMAT_2022_ps.pdf
Size:
579.92 KB
Format:
Adobe Portable Document Format