3D single breath-hold MR methodology for measuring cardiac parametric mapping at 3T

Thumbnail Image
Publication date
Defense date
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
One of the foremost and challenging subfields of MRI is cardiac magnetic resonance imaging (CMR). CMR is becoming an indispensable tool in cardiovascular medicine by acquiring data about anatomy and function simultaneously. For instance, it allows the non-invasive characterization of myocardial tissues via parametric mapping techniques. These mapping techniques provide a spatial visualization of quantitative changes in the myocardial parameters. Inspired by the need to develop novel high-quality parametric sequences for 3T, this thesis's primary goal is to introduce an accurate and efficient 3D single breath-hold MR methodology for measuring cardiac parametric mapping at 3T. This thesis is divided into two main parts: i) research and development of a new 3D T1 saturation recovery mapping technique (3D SACORA), together with a feasibility study regarding the possibility of adding a T2 mapping feature to 3D SACORA concepts, and ii) research and implementation of a deep learning-based post-processing method to improve the T1 maps obtained with 3D SACORA. In the first part of the thesis, 3D SACORA was developed as a new 3D T1 mapping sequence to speed up T1 mapping acquisition of the whole heart. The proposed sequence was validated in phantoms against the gold standard technique IR-SE and in-vivo against the reference sequence 3D SASHA. The 3D SACORA pulse sequence design was focused on acquiring the entire left ventricle in a single breath-hold while achieving good quality T1 mapping and stability over a wide range of heart rates (HRs). The precision and accuracy of 3D SACORA were assessed in phantom experiments. Reference T1 values were obtained using IR-SE. In order to further validate 3D SACORA T1 estimation accuracy and precision, T1 values were also estimated using an in-house version of 3D SASHA. For in-vivo validation, seven large healthy pigs were scanned with 3D SACORA and 3D SASHA. In all pigs, images were acquired before and after administration of MR contrast agent. The phantom results showed good agreement and no significant bias between methods. In the in-vivo experiments, all T1-weighted images showed good contrast and quality, and the T1 maps correctly represented the information contained in the T1-weighted images. Septal T1s and coefficients of variation did not considerably differ between the two sequences, confirming good accuracy and precision. 3D SACORA images showed good contrast, homogeneity and were comparable to corresponding 3D SASHA images, despite the shorter acquisition time (15s vs. 188s, for a heart rate of 60 bpm). In conclusion, the proposed 3D SACORA successfully acquired a whole-heart 3D T1 map in a single breath-hold at 3T, estimating T1 values in agreement with those obtained with the IR-SE and 3D SASHA sequences. Following the successful validation of 3D SACORA, a feasibility study was performed to assess the potential of modifying the acquisition scheme of 3D SACORA in order to obtain T1 and T2 maps simultaneously in a single breath-hold. This 3D T1/T2 sequence was named 3D dual saturation-recovery compressed SENSE rapid acquisition (3D dual-SACORA). A phantom of eight tubes was built to validate the proposed sequence. The phantom was scanned with 3D dual-SACORA with a simulated heart rate of 60 bpm. Reference T1 and T2 values were estimated using IR-SE and GraSE sequences, respectively. An in-vivo study was performed with a healthy volunteer to evaluate the parametric maps' image quality obtained with the 3D dual-SACORA sequence. T1 and T2 maps of the phantom were successfully obtained with the 3D dual-SACORA sequence. The results show that the proposed sequence achieved good precision and accuracy for most values. A volunteer was successfully scanned with the proposed sequence (acquisition duration of approximately 20s) in a single breath-hold. The saturation time images and the parametric maps obtained with the 3D dual-SACORA sequence showed good contrast and homogeneity. The septal T1 and T2 values are in good agreement with reference sequences and published work. In conclusion, this feasibility study's findings open the door to the possibility of using 3D SACORA concepts to develop a successful 3D T1/T2 sequence. In the second part of the thesis, a deep learning-based super-resolution model was implemented to improve the image quality of the T1 maps of 3D SACORA, and a comprehensive study of the performance of the model in different MR image datasets and sequences was performed. After careful consideration, the selected convolutional neural network to improve the image quality of the T1 maps was the Residual Dense Network (RDN). This network has shown outstanding performance against state-of-the-art methods on benchmark datasets; however, it has not been validated on MR datasets. In this way, the RDN model was initially validated on cardiac and brain benchmark datasets. After this validation, the model was validated on a self-acquired cardiac dataset and on improving T1 maps. The RDN model improved the images successfully for the two benchmark datasets, achieving better performance with the brain dataset than with the cardiac dataset. This result was expected as the brain images have more well-defined edges than the cardiac images, making the resolution enhancement more evident. On the self-acquired cardiac dataset, the model also obtained an enhanced performance on image quality assessment metrics and improved visual assessment, particularly on well-defined edges. Regarding the T1 mapping sequences, the model improved the image quality of the saturation time images and the T1 maps. The model was able to enhance the T1 maps analytically and visually. Analytically, the model did not considerably modify the T1 values while improving the standard deviation in both myocardium and blood. Visually, the model improved the T1 maps by removing noise and motion artifacts without losing resolution on the edges. In conclusion, the RDN model was validated on three different MR datasets and used to improve the image quality of the T1 maps obtained with 3D SACORA and 3D SASHA. In summary, a 3D single breath-hold MR methodology was introduced, including a ready to-go 3D single breath-hold T1 mapping sequence for 3T (3D SACORA), together with the ideas for a new 3D T1/T2 mapping sequence (3D dual-SACORA); and a deep learning-based post-processing implementation capable of improving the image quality of 3D SACORA T1 maps.
Mención Internacional en el título de doctor
3D cardiac T1 mapping, Cardiovascular magnetic resonance, Saturation recovery, Single breath-hold, Tissue characterization
Bibliographic citation