Publication:
Novel schemes for adaptive rejection sampling

Loading...
Thumbnail Image
Identifiers
Publication date
2011-07
Defense date
2011-07-04
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
We address the problem of generating random samples from a target probability distribution, with density function 𝑝ₒ, using accept/reject methods. An "accept/reject sampler" (or, simply, a "rejection sampler") is an algorithm that first draws a random variate from a proposal distribution with density 𝞹 (where 𝞹 ≠ 𝑝ₒ, in general) and then performs a test to determine whether the variate can be accepted as a sample from the target distribution or not. If we apply the algorithm repeatedly until we accept 𝑁 times, then we obtain a collection of 𝑁 independent and identically distributed (i.i.d.) samples from the distribution with density 𝑝ₒ. The goal of the present work is to devise and analyze adaptive rejection samplers that can be applied to generate i.i.d. random variates from the broadest possible class of probability distributions. Adaptive rejection sampling algorithms typically construct a sequence of proposal functions 𝞹ₒ, 𝞹₁,... 𝞹₁..., such that (a) it is easy to draw i.i.d. samples from them and (b) they converge, in some way, to the density 𝑝ₒ of the target probability distribution. When surveying the literature, it is simple to identify several such methods but virtually all of them present severe limitations in the class of target densities,𝑝ₒ, for which they can be applied. The "standard" adaptive rejection sampler by Gilks and Wild, for instance, only works when 𝑝ₒ is strictly log-concave. Through Chapters 3, 4 and 5 we introduce a new methodology for adaptive rejection sampling that can be used with a broad family of target probability densities (including, e.g., multimodal functions) and subsumes Gilks and Wild's method as a particular case. We discuss several variations of the main algorithm that enable, e.g., sampling from some particularly "difficult" distributions (for instance, cases where 𝑝ₒ has log-convex tails and in nite support) or yield "automatic" software implementations using little analytical information about the target density 𝑝ₒ. Several numerical examples, including comparisons with some of the most relevant techniques in the literature, are also shown in Chapter 6. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
En este trabajo abordamos el problema de generar muestras aleatorias de una distribución de probabilidad objetivo, con densidad 𝑝ₒ , empleando métodos de aceptación/rechazo. En un algoritmo de aceptación/rechazo, primero se genera una realización aleatoria de una distribución tentativa con densidad 𝞹 (donde 𝞹 ≠ 𝑝ₒ , en general) y a continuación se realiza un test para determinar si la muestra se puede aceptar como proveniente de la distribución objetivo o no. Si se aplica el algoritmo repetidamente hasta aceptar 𝑁 veces, obtenemos una colección de 𝑁 muestras independientes y idénticamente distribuidas (i.i.d.) de la distribución con densidad 𝑝ₒ. El objetivo del trabajo es proponer y analizar nuevos m étodos de aceptación/rechazo adaptativos que pueden ser aplicados para generar muestras i.i.d. de la clase más amplia posible de distribuciones de probabilidad. Los algoritmos de aceptación/rechazo adaptativos suelen construir una secuencia de funciones tentativas 𝞹ₒ, 𝞹₁,... 𝞹₁..., tales que (a) sea fácil generar muestras i.i.d. a partir de ellas y (b) converjan, de manera adecuada, hacia la densidad 𝑝ₒ de la distribución objetivo. Al revisar la literatura, es sencillo identificar varios métodos de este tipo pero todos ellos presentan limitaciones importantes en cuanto a las clases de densidades objetivo a las que se pueden aplicar. El método original de Gilks y Wild, por ejemplo, sólo funciona si 𝑝ₒ es estrictamente log-cóncava. En los Capí tulos 3, 4 y 5 presentamos una nueva metodología para muestreo adaptativo por aceptación/rechazo que se puede utilizar con una amplia clase de densidades de probabilidad objetivo (incluyendo, por ejemplo, funciones multimodales) y comprende al método de Gilks y Wild como un caso particular. Se discuten diversas variaciones del algoritmo principal que facilitan, por ejemplo, el muestreo de algunas distribuciones particularmente "difíciles" (e.g., casos en los que 𝑝ₒ tiene colas log-convexas y con soporte infinito) o una implementación software prácticamente "automática", en el sentido de que necesitamos poca información analítica acerca de la función 𝑝ₒ. En el Capítulo 6 mostramos varios ejemplos numéricos, incluyendo comparaciones con algunas de las técnicas máas relevantes que se pueden encontrar en la literatura.
Description
Keywords
Random samples, Probability distribution, Rejection sampling
Bibliographic citation
Collections