Publication:
Automatic tempered posterior distributions for bayesian inversion problems

Loading...
Thumbnail Image
Identifiers
Publication date
2021-04-01
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
We propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the inference of the variables of interest and the power of the data noise are carried out using distinct (but interacting) methods. More specifically, we consider a Bayesian analysis for the variables of interest (i.e., the parameters of the model to invert), whereas we employ a maximum likelihood approach for the estimation of the noise power. The whole technique is implemented by means of an iterative procedure with alternating sampling and optimization steps. Moreover, the noise power is also used as a tempered parameter for the posterior distribution of the the variables of interest. Therefore, a sequence of tempered posterior densities is generated, where the tempered parameter is automatically selected according to the current estimate of the noise power. A complete Bayesian study over the model parameters and the scale parameter can also be performed. Numerical experiments show the benefits of the proposed approach.
Description
Keywords
Bayesian inference, Importance sampling, MCMC, Inversion problems
Bibliographic citation
Martino, L., Llorente, F., Curbelo, E., López-Santiago, J. & Míguez, J. (2021). Automatic Tempered Posterior Distributions for Bayesian Inversion Problems. Mathematics, 9(7), 784.