Publication:
Radiation-induced magnetoresistance oscillations with massive Dirac fermions

dc.affiliation.dptoUC3M. Departamento de Físicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Materiales Nano-Estructurados y Multifuncionaleses
dc.contributor.authorIñarrea Las Heras, Jesús
dc.contributor.authorPlatero Coello, Gloria
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2021-10-26T11:55:23Z
dc.date.available2021-10-26T11:55:23Z
dc.date.issued2021-06-03
dc.description.abstractWe Report On A Theoretical Study On The Rise Of Radiation-Induced Magnetoresistance Oscillations In Two-Dimensional (2d) Systems Of Massive Dirac Fermions.We Study The Bilayer System Of Monolayer Graphene And Hexagonal Boron Nitride (H-Bn/Graphene) And The Trilayer System Of Hexagonal Boron Nitride Encapsulated Graphene (H-Bn/Graphene/H-Bn).We Extend The Radiation-Driven Electron Orbit Model That Was Previously Devised To Study The Same Oscillations In 2d Systems Of Schrödinger Electrons (Gaas/Algaas Heterostructure) To The Case Of Massive Dirac Fermions. In The Simulations We Obtain Clear Oscillations For Radiation Frequencies In The Terahertz And Far-Infrared Bands.We Investigate Also The Power And Temperatures Dependence. For The Former We Obtain Similar Results As For Schrödinger Electrons And Predict The Rise Of Zero Resistance States. For The Latter We Obtain A Similar Qualitatively Dependence But Quantitatively Different When Increasing Temperature. While In Gaas The Oscillations Are Wiped Out In A Few Degrees, Interestingly Enough, For Massive Dirac Fermions, We Obtain Observable Oscillations For Temperatures Above 100 K And Even At Room Temperature For The Higher Frequencies Used In The Simulations.en
dc.description.sponsorshipThis work is supported by the MINECO (Spain) under Grant MAT2017-86717-P and ITN Grant 234970 (EU). Grupo de matematicas aplicadas a la materia condensada, (UC3M), Unidad Asociada al CSIC.en
dc.format.extent10es
dc.identifier.bibliographicCitationNew journal of physics, 23(6), 063004, June 2021, 10 p.en
dc.identifier.doihttps://doi.org/10.1088/1367-2630/abfe97
dc.identifier.issn1367-2630
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue6, 063004es
dc.identifier.publicationlastpage10es
dc.identifier.publicationtitleNEW JOURNAL OF PHYSICSen
dc.identifier.publicationvolume23es
dc.identifier.urihttps://hdl.handle.net/10016/33492
dc.identifier.uxxiAR/0000028299
dc.language.isoengen
dc.publisherIOP Publishingen
dc.relation.projectIDGobierno de España. MAT2017-86717-Pes
dc.rights© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.en
dc.rightsOriginal content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.ecienciaFísicaes
dc.subject.ecienciaMaterialeses
dc.subject.otherGrapheneen
dc.subject.otherMagnetotransporten
dc.subject.otherTerahertz radiationen
dc.subject.otherZero resistance statesen
dc.titleRadiation-induced magnetoresistance oscillations with massive Dirac fermionsen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
radiation_NJP_2021.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format