Publication:
Unified moving-boundary model with fluctuations for unstable diffusive growth

dc.affiliation.dptoUC3M. Departamento de Matemáticases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Interdisciplinar de Sistemas Complejos (GISC)es
dc.contributor.authorNicoli, Matteo
dc.contributor.authorCañadas Castro, Mario
dc.contributor.authorCuerno, Rodolfo
dc.date.accessioned2010-02-15T13:52:55Z
dc.date.available2010-02-15T13:52:55Z
dc.date.issued2008-08
dc.description17 pages, 9 figures.-- PACS nrs.: 81.10.-h, 68.35.Ct, 64.60.Ht, 81.15.Gh.-- MSC2000 code: 82C24.-- ArXiv pre-print available at: http://arxiv.org/abs/0812.4160
dc.descriptionMR#: MR2496824 (2010c:82073)
dc.descriptionFinal publisher version available Open Access at: http://gisc.uc3m.es/~cuerno/publ_list.html
dc.description.abstractWe study a moving-boundary model of nonconserved interface growth that implements the interplay between diffusive matter transport and aggregation kinetics at the interface. Conspicuous examples are found in thin-film production by chemical vapor deposition and electrochemical deposition. The model also incorporates noise terms that account for fluctuations in the diffusive and attachment processes. A small-slope approximation allows us to derive effective interface evolution equations (IEEs) in which parameters are related to those of the full moving-boundary problem. In particular, the form of the linear dispersion relation of the IEE changes drastically for slow or for instantaneous attachment kinetics. In the former case the IEE takes the form of the well-known (noisy) Kuramoto-Sivashinsky equation, showing a morphological instability at short times that evolves into kinetic roughening of the Kardar-Parisi-Zhang (KPZ) class. In the instantaneous kinetics limit, the IEE combines the Mullins-Sekerka linear dispersion relation with a KPZ nonlinearity, and we provide a numerical study of the ensuing dynamics. In all cases, the long preasymptotic transients can account for the experimental difficulties in observing KPZ scaling. We also compare our results with relevant data from experiments and discrete models.
dc.description.sponsorshipThis work has been partially supported by UC3M/CAM (Spain) Grant No. UC3M-FI-05-007, CAM (Spain) Grant No. S-0505/ESP-0158, and by MEC (Spain), through Grants No. FIS2006-12253-C06-01, No. FIS2006-12253-C06-06, and the FPU program (M. N.).
dc.description.statusPublicado
dc.format.mimetypeapplication/pdf
dc.identifier.bibliographicCitationPhysical Review E 78, 021601 (2008)
dc.identifier.doihttps://www.doi.org/10.1103/PhysRevE.78.021601
dc.identifier.issn1539-3755
dc.identifier.urihttps://hdl.handle.net/10016/6864
dc.language.isoeng
dc.publisherThe American Physical Society
dc.relation.publisherversionhttp://dx.doi.org/10.1103/PhysRevE.78.021601
dc.rights© The American Physical Society
dc.rights.accessRightsopen access
dc.subject.ecienciaMatemáticas
dc.subject.otherStatistical Mechanics
dc.subject.otherMaterials Science
dc.titleUnified moving-boundary model with fluctuations for unstable diffusive growth
dc.typeresearch article*
dc.type.reviewPeerReviewed
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
unified_cuerno_pre_2008_ps.pdf
Size:
672.32 KB
Format:
Adobe Portable Document Format