Publication:
Bootstrap prediction intervals for VaR and ES in the context of GARCH models

Loading...
Thumbnail Image
Identifiers
Publication date
2010-05
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper, we propose a new bootstrap procedure to obtain prediction intervals of future Value at Risk (VaR) and Expected Shortfall (ES) in the context of univariate GARCH models. These intervals incorporate the parameter uncertainty associated with the estimation of the conditional variance of returns. Furthermore, they do not depend on any particular assumption on the error distribution. Alternative bootstrap intervals previously proposed in the literature incorporate the first but not the second source of uncertainty when computing the VaR and ES. We also consider an iterated smoothed bootstrap with better properties than traditional ones when computing prediction intervals for quantiles. However, this latter procedure depends on parameters that have to be arbitrarily chosen and is very complicated computationally. We analyze the finite sample performance of the proposed procedure and show that the coverage of our proposed procedure is closer to the nominal than that of the alternatives. All the results are illustrated by obtaining one-step-ahead prediction intervals of the VaR and ES of several real time series of financial returns.
Description
Keywords
Expected Shortfall, Feasible Historical Simulation, Hill estimator, Parameter uncertainty, Quantile intervals, Value at Risk
Bibliographic citation