Publication:
Goodness-of-fit test for randomly censored data based on maximum correlation

Loading...
Thumbnail Image
Identifiers
Publication date
2014-07
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper we study the goodness-of-fit test introduced by Fortiana and Grané (2003) and Grané (2012), in the context of randomly censored data. We construct a new test statistic undergeneral right-censoring, i.e., with unknown censoring distribution, and prove its asymptoticproperties. Additionally, we study a special case, when the censoring mechanism follows the well-known Koziol-Green model. We present an extensive simulation study on the empirical power of these two versions of the test statistic. We show the good performance of the test statistics in detecting symmetrical alternatives and their advantages over the most famousPearson-type test proposed by Akritas (1988). Finally, we apply our test to the head-and-neck-cancer data
Description
Keywords
Goodness-of-fit, Kaplan-Meier estimator, Maximum correlation, Random censoring
Bibliographic citation