
An Efficient Behavior Classifier based on Distributions of
Relevant Events

Jose Antonio Iglesias and Agapito Ledezma and Araceli Sanchis1 and Gal Kaminka2

1 Introduction
Recognizing the behavior of others is a significant aspect of many
different human tasks. In order to make a good decision, humans
usually try to predict the behavior of others. We present an approach
for creating automatically the model of the behavior of agents (soft-
ware agents, robots or humans). Because of the sequence learning is
a common form of human and animal learning, the observations of
an agent are transformed into a sequence of atomic behaviors which
is statistical analyzed to find out its corresponding behavior model.

Before recognizing a behavior, it needs to be modeled. Differ-
ent techniques have been used in agent modeling in different areas:
opponent-modeling in soccer domain simulation [6], intelligent user
interface [7], and virtual environment for training [8]. However, al-
though lot of research focus on agent modeling in an specific envi-
ronment, it is not clear that they can be used in other environments.

The aim of this research is to provide a general framework which
can represent and classify different agent behaviors in a wide range
of domains. Also, as the actions performed by an agent are usually
influenced by his past experiences, the automated sequence learning
is used for behavior classification.

2 ABCD: Agent Behavior Classifier based on
Distributions of relevant events

Any behavior has a sequential aspect and this sequentiality should be
considered in the modeling process. Our approach classifies an ob-
served agent behavior into the classes (behaviors) stored previously
in a library. Therefore, this process is divided in the following 2 parts:

2.1 Construction of Behavior Models
1. Obtaining Atomic Behavior Sequences: Useful features are ex-

tracted from the stream of observations of the environment and an
ordered sequence of events is obtained. An event is an atomic be-
havior that occurs during a particular interval of time and defines
an specific agent act. The type of events is domain-dependent.

2. Creating the behavior model: The temporal dependencies are
very significant and to get the most representative set of sequen-
tial events (subsequences) from the acquired sequence, the data
structure trie [2] is used as in [3, 4]. The construction of a trie
from a single sequence of events is processed in three steps:
a) Segmentation of the sequence: This segmentation can be done
by using some environment characteristic that separates the se-
quence in several subsequences of uninterrupted events or by ob-
taining every possible ordered subsequence of a defined length.

1 Carlos III University of Madrid, Spain, {jiglesia, ledezma,
masm}@inf.uc3m.es

2 Bar-Ilan University, Israel, galk@cs.biu.ac.il

b) Storage of the subsequences in a trie: The subsequences of
events are stored in a trie, in which every node represents an event,
and the node’s children represent the events that have appeared
following this event. Each node keeps track of the number of times
an event has been inserted on to it. The subsequence suffixes (sub-
sequences that extend to the end of the sequence) are also inserted.
c) Creation of the behavior model: The trie is traversed to
calculate the relevance of each subsequence. For this purpose,
frequency-based methods are used and the relative frequency or
support of a subsequence is calculated. Then, an agent behavior
model is represented by the distribution of its subsequences.

3. Storing the model in the Library: Once a behavior model (distri-
bution of relevant subsequences) is created, it is stored in Library
of Behavior Models (LibBM) (similar to plan-libraries used in plan
recognition). This model is stored (with an identification name) as
a trie for a good and effective handling (Figure 1a).

Figure 1. Agent Behavior Classification Process

2.2 Behavior Classification
The observations of the agent to classify are collected and the cor-
responding behavior model (represented by a distribution of events)
is created. Then, it is matched with all the behavior models stored in
LibBM. As both models are represented by a distribution of events,
an statistical test is applied for matching these distributions.

The proposed non-parametric test applied for matching two be-
haviors is a modification of Chi-Square Test for two samples. The
behavior model to classify is considered as an observed sample and
all the behavior models stored in LibBM are considered as expected

1

Published in: ECAI 2008, 18th European Conference on Artificial Intelligence, Patras, Greece, july, 21st-25th, 2008. IOS Press, 2008 (Frontiers in Artificial Intelligence and Applications, vol. 178), pp. 825–826

samples. This test compares the observed distribution with all the ex-
pected distributions objectively and evaluates if a deviation appears.

The proposed test is the comparison of two sets of support values
in which Chi-Square is the sum of the terms (Exp−Obs)2

Obs
(Figure 1b).

With this comparison, a value (comparing value) that indicates the
difference (deviation) between the two distributions is obtained. The
lower the value, the closer the similarity between the two behaviors.
This comparison test is applied once for each behavior model stored
in LibBM. The model which obtains the lowest deviation is consid-
ered as the most similar one. An advantage of the proposed test is
its rapidity because only the observed subsequences are evaluated.
However, there is no penalty for the expected relevant subsequences
which do not appear in the observed distribution.

3 Experiments
3.1 UNIX User Classification
In this domain, the behavior of a user is represented by the sequence
of UNIX commands he/she typed during a period of time. We use
9 sets of preprocessed user data drawn from the command histories
of 9 UNIX computer users [1]. Each UNIX user file is divided in:
1.Training Files: created with a small and random part of consecu-
tive commands (100, 250, 500 and 850 commands) taking from the
corresponding User file and creating 4 different LibBMs. These re-
sults are calculated using subsequences of size 6. 2. Testing Files:
Obtained from the other part of each given user file. 20 Testing files
with different amount of commands (from 15 to 35) are evaluated.

For evaluating the results, a value (Classification Result Value) is
calculated from the ranking list obtained for each classification. If the
classification is done correctly, this value is the difference (positive)
between the lowest and the second lowest value. If the classification
is done incorrectly; for evaluating how far the obtained result is from
the correct one, this value is calculated by comparing the lowest value
with the obtained value (obtaining a negative value).

Figure 2. Classification Results - User 5

Figure 2 shows the classification results of 20 different commands
of a UNIX user. X-axis: length of the sequence to classify (from 15
to 35 commands). Y-axis: classification result value obtained by ap-
plying ABCD. The 4 lines show the results by using 4 different sizes
of Training Files to create the Tries of the LibBM: 100, 250, 500 and
850 commands. Each graph point is the average value of 25 differ-
ent test conducted. Although this average determines that a sequence
is correctly classified most of the tests, the classification of the 25
tests is not always correct. The percentages of the 25 tests correctly
classified using testing file of 20 commands are shown in Figure 2.

3.2 RoboCup Soccer Coach Simulation
The goal in this domain is to observe a game and recognize the be-
havior models (previously analyzed and stored in LibBM) followed
by the opponent team members. For these experiments, we have used
the rules from the RoboCup 2006 Coach Competition. The construc-
tion of models is done considering only the behavior followed by a
few players (player behavior). However, the behavior to classify is
the sum of several player behaviors (team behavior). The construc-
tion of models is done by analyzing several game log files (Train-
ing files) in which different player behaviors are activated. The pro-
cedure to identify high-level events in a soccer game described by
Kuhlmann et al. [5] is used. Then, a new game in which several
player behaviors are activated at the same time (team behavior) is
observed and the player behaviors activated must be recognized.

In these experiments, 17 player behaviors are analyzed (download
from RoboCup 2006 Coach Competition web page) and stored in
LibBM. The ranking list obtained (with the most likely player behav-
iors) is evaluated. Table 1 shows the first 10 elements of the rank-
ing lists obtained for the 3 iterations of the first round. The number
of player behaviors activated in each iteration is indicated in square
brackets. The player behaviors are identified with a number (from 00
to 16) and the player behaviors activated are marked with an asterisk.

Table 1. Results for the RoboCup Coach Competition. Round1

Ranking list reported (most likely player behaviors)
Iter1 [4] 04(*), 16, 00(*), 12, 15(*), 03, 09, 05, 01, 06
Iter2 [5] 16(*), 01(*), 00, 13(*), 05, 09, 07(*), 03, 10, 08(*)
Iter3 [5] 04(*), 02(*), 13, 05, 12, 00(*), 01, 06(*), 03, 10

4 Conclusions and Future Works
A general approach which can represent and handle different behav-
iors in a wide range of domains is provided and it is generalizable us-
ing behaviors represented by a sequence of events. The experiments
show that a system based on ABCD is very effective for classifying a
UNIX user. For areas such as computer intrusion detection, these re-
sults are very encouraging. In the real-time and multi-agent domain;
the results depend of the kind of behavior to recognize, however the
obtained results are satisfactory.

As many agents change their behavior and their preferences over
time, their models should be frequently revised to keep it up to date.
This aspect could be solved by using Evolving Systems. Also, the use
of the classification results for carrying out effective actions in the
environment is considered in our future work3.

REFERENCES
[1] C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of

machine learning databases, 1998.
[2] E. Fredkin, ‘Trie memory’, Comm. A.C.M., 3(9), 490–499, (1960).
[3] José Antonio Iglesias, Agapito Ledezma, and Araceli Sanchis, ‘A com-

paring method of two team behaviours in the simulation coach competi-
tion’, in MDAI, volume 3885 of LNCS, pp. 117–128. Springer, (2006).

[4] Jose Antonio Iglesias, Agapito Ledezma, and Araceli Sanchis, ‘Se-
quence classification using statistical pattern recognition’, in IDA, pp.
207–218, (2007).

[5] Gregory Kuhlmann, Peter Stone, and Justin Lallinger, ‘UT Austin Villa
2003 simulator online coach team’, in RoboCup2003, (2004).

[6] Agapito Ledezma, Ricardo Aler, Araceli Sanchis, and Daniel Borrajo,
‘Predicting opponent actions by observation.’, in RoboCup, (2004).

[7] Neal Lesh, Charles Rich, and Candace L. Sidner, ‘Using plan recognition
in human-computer collaboration’, in UM99, pp. 23–32, (1999).

[8] M. Tambe and P. S. Rosenbloom, ‘Resc: An approach for dynamic, real-
time agent tracking’, in IJCAI-95, Montreal, Canada, (1995).

3 Acknowledgments. This work has been supported by the Spanish Ministry
of Education and Science under project TRA-2007-67374-C02-02.

2

