
Optimizing Data Transformations for
Classification Tasks

José M. Valls and Ricardo Aler??

Universidad Carlos III de Madrid, Spain
jvalls@inf.uc3m.es
aler@inf.uc3m.es

http://www.evannai.inf.uc3m.es

Abstract. Many classification algorithms use the concept of distance or
similarity between patterns. Previous work has shown that it is advan-
tageous to optimize general Euclidean distances (GED). In this paper,
data transformations are optimized instead. This is equivalent to search-
ing for GEDs, but can be applied to any learning algorithm, even if it
does not use distances explicitly. Two optimization techniques have been
used: a simple Local Search (LS) and the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES). CMA-ES is an advanced evolutionary
method for optimization in difficult continuous domains. Both diagonal
and complete matrices have been considered. Results show that in gen-
eral, complete matrices found by CMA-ES either outperform or match
both Local Search, and the classifier working on the original untrans-
formed data.

Key words: Data transformations, General Euclidean Distances, Evo-
lutionary Computation, Evolutionary-based Machine Learning

1 Introduction

Many classification algorithms use the concept of distance or similarity between
patterns. This is specially true for local classification methods such as Radial
Basis Neural Networks [1] or Nearest Neighbor classifiers [2]. It has been ac-
knowledged that the Euclidean distance is not always the most appropriate for
a particular domain, and for that reason other distances, like Mahalanobis or
Chebyshev, have been proposed. For instance, the Mahalanobis distance normal-
izes attributes by taking into account variances and removing correlations. This
distance is computed according to Eq. 1.

dij = [(xi − xj)T S−1(xi − xj)]1/2 = [(xi − xj)T MT M(xi − xj)]1/2 (1)

Where dij is the Mahalanobis distance between vectors xi and xj , S is the
variance-covariance matrix of all vectors in the data set and M is the so-called
?? Work supported by project TIN2008-06491-C04-04 funded by Spanish MICINN.

2 José M. Valls and Ricardo Aler? ? ?

Mahalanobis matrix[3–5]. However, the Mahalanobis distance is computed in an
unsupervised way, without taking into account the class or the training error
of the classifier. In other words, the distance is not optimized for the learning
algorithm or the classification task.

There are some works that optimize the distance in a supervised way. In [7],
semidefinite programming has been used to learn a Mahalanobis distance for
KNN. The latter work contains also a good review of previous work on metric
learning for KNN. In [10], Genetic Algorithms have been used to evolve Gener-
alized Euclidean Distances (GED) for Radial Basis Neural Networks (RBNN).
GEDs look like Eq. 1, except that matrix S−1 (or matrix M) is not computed
from the data, but optimized by the Genetic Algorithm, where the fitness func-
tion is the classifier error on a training dataset.

However, this approach can only be used in classification algorithms that
explicitly use distances, like RBNN, but not others like C4.5. However, a little
algebra (Eq. 2) shows that the GED is equivalent to computing an Euclidean
distance on a projected dataset, where the new patterns in the projected space
are linear transformations of the original data: x′ = Mx.

dij = [(Mxi −Mxj)T (Mxi −Mxj)]1/2 (2)

Therefore, in this paper a search method will be used to look for a transfor-
mation M (instead of a GED), that optimizes the training error of a learning
algorithm. Any learning algorithm can be used but in the present work, a nearest
neighbor algorithm (KNN) has been applied.

Two optimization techniques will be applied. First, a simple local search
(LS) method is proposed as a baseline to compare with more advanced optimiza-
tion methods. The second technique is CMA-ES (Covariance Matrix Adaptation
Evolution Strategy), one of the best evolutionary techniques for continuous op-
timization in difficult non-linear domains [8][9]. An Evolution Strategy (ES) is a
stochastic iterative optimization method that starts from a random population of
candidate solutions, mutates them by adding Gaussian-distributed values, and
selects the best performing ones. This procedure iterates until some stopping
criterion is fulfilled. CMA-ES is an ES where the direction of the mutation and
the step size are controlled by a covariance matrix, which is updated during the
search process, so that previously realized successful steps happen again more
likely. This self-adaptation of the step-size is important for our work, because a
fixed step-size might be too small at the beginning of the search (where a quick
exploration of the search space is required) or too large at the end, where only
very small steps will get closer to the solution.

The structure of this article is as follows. Section 2 describes the method,
Section 3 describes the synthetic and real domains that have been used to test
the approach, and also reports the results of the experiments. Finally, Section 4
draws some conclusions and points to future work.

Optimizing Data Transformations for Classification 3

2 Description of the method

In this paper two optimization algorithms for finding a linear transformation of a
dataset have been applied. They both attempt to minimize the classification error
of a learning technique. The first one is a simple local search method that is used
only as a baseline to compare with a second more advanced method: CMA-ES.
In both methods, transformations are represented as matrices, which are coded
directly as lists of real numbers. CMA-ES is extensively described in [8] [9]. The
Matlab code available at http://www.lri.fr/~hansen/cmaes_inmatlab.html
has been used.

With respect to the local search method, Algorithm 1 provides a summary
of the algorithm. First, matrix M is initialized to the identity matrix I (line
1). In fact this means that the starting matrix m corresponds to the Euclidean
distance (Matrix I). Then, the training dataset T is transformed by matrix M
(line 2) and the error EM of the learning algorithm L on T is computed (line
3). In order to prevent overfitting, EM has been computed by means of 10-fold
crossvalidation. Then, the main loop is entered (line 4) where M is mutated (line
5) and the error of M ′ is computed (line 6). If M ′ is more accurate than M ,
then M ′ is kept (line 8).

Algorithm 1: Local Search
M = I1
TM = M ∗ T2
EM = error(L, TM)3
while not stopping condition do4

M ′ = mutate(M)5
EM′ = error(L, TM′)6
if EM′ <= EM then7

M ← M ′8
EM = EM′9

end10

end11

Two types of matrices have been considered: diagonal matrices (where all
elements outside the diagonal are zero) and arbitrary non-diagonal matrices
(n × n square matrices) that will be named ’complete matrices’ in this paper.
Using diagonal matrices amounts to just a weighting of the attributes by the
corresponding element in the diagonal. The reason for testing these two types
of structures is to check whether complete matrices are actually useful beyond a
mere attribute weighting. In other words, complete matrices involve fitting many
parameters (n× n) and it is important to know whether they improve accuracy
or rather produce overfitting.

Mutation in local search is carried out by adding a random sample from a
Gaussian N(0, 1) distribution. The probability of mutating a matrix element has
been set to pm = 1√

n×n
, where n is the number of attributes and n×n is the size

(the number of elements) of the complete square matrix. This means that for a
complete matrix, the average number of elements that will be mutated is n. This
setting worked well in preliminary experiments. One of the main differences of
the simple local search algorithm and CMA-ES is that in the latter, the mutation
step is controlled by a multivariate Gaussian distribution where the covariance

4 José M. Valls and Ricardo Aler? ? ?

matrix is adjusted during the course of the search, allowing for a finely tuned
optimization at the end of the optimization process. In the experimental section,
it will be determined to what extent this feature contributes to a high accuracy
in the classification task.

CMA-ES also starts from the identity matrix and its initial step size is 1.0
(although CMA-ES will adjust this value in the course of the search). Both CMA-
ES and local search stop after the same maximum number of matrix evaluations,
which is determined experimentally for every domain.

Any learning algorithm L could be used. In this paper, the neighborhood-
based algorithm KNN (with k = 1) has been selected. KNN makes very intuitive
to think about what data transformations could be useful for this method. This
has provided some guidance for proposing several of the synthetic domains that
will be presented in the next section.

3 Experiments

In this Section, experiments carried out on several domains will be reported.

3.1 Domains

Four synthetic domains and three real world domains have been used. All of
them correspond to classification problems and have numerical attributes. They
are described next.

Artificial data domains Four synthetic domains have been tested: the well-
known Ripley [6] dataset, which has been widely used in the Machine Learning
literature, and three more artificial domains that we have called RandomAttr,
Straight0 and Straight45, specifically designed to check if the approach works
properly.

The Ripley domain is a two-class problem with data distributed according
to four overlapping Gaussians.

RandomAttr is a two-class domain with four real-valued attributes x1, x2,
x3, x4. The examples have been randomly generated following an uniform dis-
tribution in the interval [0, 1] for attributes x1, x2 and the interval [0, 100] for
attributes x3, x4. If x1 < x2 then the example is labeled as class ’1’. Otherwise,
if x1 > x2 the example belongs to class ’0’. Thus, attributes x3 and x4 are
irrelevant. Because the ranges of irrelevant attributes are much bigger, the clas-
sification accuracy of KNN is very bad (about 50%). The dataset is composed
of 300 examples, 150 from each class.

Straight-45 is a two-class domain with two real-valued attributes. The ex-
amples have been generated in this way: initially 100 examples of class 1 are
located ar regular intervals in a straight line passing through the origin (0, 0)
with an angle of 45 degrees respect to the horizontal axe. The distance between
two consecutive points is 1. 100 examples of class 0 are generated in the same
way in a parallel straight line passing through the point (0,−1) in such a way

Optimizing Data Transformations for Classification 5

that the nearest point of a given point always belongs to the opposite class,
because it is located in the opposite parallel straight line. Then all points are
perturbed by adding to each coordinate a random number uniformly distributed
in [−0.5, 0.5].

The idea behind this domain is that the nearest neighbor algorithm will
achieve a very bad result because most of the times the nearest neighbor of a
given point belongs to the opposite class. But certain transformations of the
data involving rotations and coordinate scaling will allow a good classification
rate. Fig. 1 (left) shows a graphical representation of a subset of the domain.

Straight-0 is very similar to Straight45. The only difference is that all the
points have been rotated 45 degrees anti-clockwise. The motivation for using
this domain is that in this case with a simpler transformation the data could
be properly classified because no rotation is needed. In Fig. 1 (right) it can be
seen the representation of a subset of points. In short, Straight45 requires both
rotation and scaling (a complete matrix) whereas Straight-0 requires scaling
only (a diagonal matrix).

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

x
2

x1

Straight-45

Class 1
Class 0

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

x
2

x1

Straight-0

Class 1
Clase 0

Fig. 1. Subsets of the Straight-45 (left) and Straight-0 (right) domains

Real world data domains The Iris (150 instances, 4 attributes, and 3 classes),
Car (1728, 6, 4), Bupa (345, 7, 2), and Wine (178, 13, 3) domains from the
UCI Machine Learning Repository have been used 1.

3.2 Experimental Results. Evolving linear transformations for KNN

This subsection reports the experimental results obtained by our method when
linear transformations are evolved and KNN (with k=1) is used as classifier in
the transformed space. As explained in Section 2, two optimization techniques
have been used: a basic Local Search method (LS) and CMA-ES.

A 10-fold crossvalidation has been used in all cases for testing. The parame-
ters for the search methods have been chosen in the following way: for CMA-ES,
the initial standard deviation has been set to 1.0 for all the experiments. For
LS, the standard deviation for the Gaussian mutation of an element is also 1.0
1 http://archive.ics.uci.edu/ml/

6 José M. Valls and Ricardo Aler? ? ?

in all cases. The maximum number of fitness evaluations has been set to the
same value for both search methods by means of preliminary experiments for
every domain. It is considered that the training error rate has converged when
it does not decrease by more than 10−3 in two successive iterations. For LS, the
probability of mutating a matrix element is pm = 1√

n×n
, as explained in Sec-

tion 2. This probability is the same for all the experiments. The rest of CMA-ES
parameters are set to their default values.

In all domains, the classification results in five situations are compared: for
each fold, KNN classifies the original data, the data transformed by a diagonal
matrix optimized by CMA-ES, by a diagonal matrix optimized by LS, by a com-
plete matrix optimized by CMA-ES and finally, by a complete matrix optimized
by LS. In all cases linear transformations are done by means of square matrices
and thus, the dimension of the transformed spaces remain unaltered. Using a
diagonal matrix is equivalent to scaling the original data coordinates. If a com-
plete matrix is used there are no restrictions, being the linear transformation
completely general.

Table 1 shows the classification accuracy rates obtained for all the domains
and their standard deviations. The results correspond to the mean of the accu-
racy rates obtained in a 10-fold crossvalidation procedure.

Table 1. Classification Rate (percentage) with KNN (k=1) for the original data set
and for the transformed data when diagonal and complete matrices are used. Matrices
have been optimized by LS and CMA-ES

Original Data CMA-ES LS CMA-ES LS
Diagonal Diagonal Complete Complete

Straight-0 6.50± 5.29 100.00± 0.00 100.00± 0.00 99.50± 1.58 99.50± 1.58
Straight-45 8.50± 6.26 8.00± 6.32 7.50± 5.40 98.50± 3.37 98.50± 3.37

RandomAttr 49.00± 8.47 93.67± 4.83 81.67± 13.63 80.67± 19.10 54.67± 15.33
Ripley 88.64± 4.04 89.12± 4.13 89.12± 4.35 87.68± 2.19 87.44± 1.71
Car 87.85± 2.28 96.01± 0.84 95.60± 1.06 97.40± 1.28 96.64± 1.75
Iris 96.00± 3.44 93.33± 5.44 92.67± 7.34 98.00± 3.22 94.67± 6.88

Bupa 60.58± 9.52 60.58± 8.49 61.74± 5.35 65.22± 8.76 64.93± 8.31
Wine 78.27± 10.24 92.67± 4.55 94.37± 4.63 84.83± 10.5 77.53± 9.7

In the Straight0 domain, results show that KNN only obtains a classification
rate of 6.5% on the original data set (as expected), but if the data is transformed
by a diagonal matrix the rate is 100% (99.5% for a complete matrix). The slightly
worse result obtained with the complete matrix is explained because the number
of parameters to adjust is larger.

In the Straight45 domain, the second row of Table 1 shows that KNN ob-
tains a very bad classification accuracy on the original data, as expected (8.5%).
As explained in the description of the domain, a diagonal matrix is not enough
to obtain an adequate transformation of data (around 8%, independently of the
optimization method used). On the contrary, when a complete matrix is used,
the results are near to 100%.

Optimizing Data Transformations for Classification 7

The RandomAttr domain has two irrelevant attributes whose numeric
range is much bigger than the relevant attributes range. That is the reason
why the accuracy of KNN on the original data is 49%. Scaling the irrelevant at-
tributes should be enough to attain a much better accuracy, thus both diagonal
and complete matrices should be appropriate. The results show that CMA-ES
is able to find diagonal matrices that obtain a 93.7% classification accuracy. LS
performs worse in this case (81.7%). When complete matrices are used, CMA-ES
attains a 80.7% accuracy rate and LS only attains a 54.7% In this domain com-
plete matrices do not perform as well as diagonal matrices because the number
of elements to adjust is bigger and only a scaling of the coordinates is neccesary.
However, CMA-ES is able to find appropriate matrices whereas LS is not. In
Table 1 it can also be seen that the variability of the 10 folds results is much
bigger in this domain when the complete matrix is used.

Regarding to the remaining domains, in the Ripley domain the results with
the transformed data are quite similar to the rates obtained with the original
set. That means that the system can not find any linear transformation than
improves the accuracy. In the Iris data set, diagonal matrices worsen the ac-
curacy. However, complete matrices optimized by CMA-ES improve the results
slightly. The classifier attains very good results (97.4%) with the Car data set
when complete matrices are used. With diagonal matrices, the results (96%) are
better than the corresponding to the original data (87.8%). In the Bupa domain
the accuracy is improved when using complete matrices. KNN obtains a classi-
fication accuracy of 60% on the original data and 65% on the transformed data
with complete matrices. However, the accuracy does not improve when diago-
nal matrices are used. Finally, in the Wine domain it is diagonal matrices that
improve on KNN results, but in this case LS outperforms slightly CMA-ES.

Summarizing the results, it can be observed that complete CMA-ES and LS
outperform KNN on the original data for nearly all domains (except Ripley and
Iris, where results are very close). In general, complete CMA-ES outperforms
complete LS, although the differences are not large (except in RandomAttr and
Wine where both algorithms tend to fall into local minima in some of the execu-
tions). Also, in general, the complete matrix approach outperforms the diagonal
one or gets similar results, except (again) in RandomAttr and Wine. This means
that in some cases, both scaling and rotations are required. And in those cases
where results are similar, the complete matrix approach manages to produce an
appropriate result even though there are many more parameters to fit. Rando-
mAttr and Wine are special cases where complete CMA-ES (and LS) seem to
get stuck in local minima: complete matrices could in principle match the ac-
curacy obtained by diagonal ones (because complete matrices include diagonal
ones), but they do not. In the future, methods for avoiding this situation will be
proposed.

8 José M. Valls and Ricardo Aler? ? ?

4 Conclusions

This work reports on two optimization algorithms (Local Search and CMA-
ES) for finding linear transformations (represented by matrices) for datasets, in
order to improve the accuracy on classification tasks. The goal of the search is
to find matrices that minimize the classification error on the training data. Both
diagonal and complete matrices have been considered. The non-linear classifier
KNN has been applied on the transformed data. The method has been tested
with seven different domains, both synthetic and real, and the results show that,
in general, complete matrices found by CMA-ES either outperform or match
both Local Search and the classifier on untransformed data.

In this paper, KNN has been used as the base algorithms, but because our
method involves domain independent optimization methods, the approach can be
applied to any other classifier. In the future, we will test if other learning methods
benefit from data transformations. Also, by using rectangular matrices instead
of square ones, the performance of the method as a dimensionality reduction
technique could be tested (in a similar vein to [11]). Finally, non-standard
CMA-ES features, like re-starts, might be of use to solve the local minima issues
reported in this paper.

References

1. J.E. Moody and C. Darken. Fast Learning in Networks of Locally Tuned Processing
Units. Neural Computation, 1:281–294, 1989.

2. T.M. Cover and P.E. Hart. Nearest Neighbor Pattern Classification. IEEE Trans.
Inform. Theory, 13(1):21–27,1967.

3. C.G.Atkenson, A.W.Moore, and S.Schaal. Locally Weighted Learning. Artificial In-
telligence Review, 11:11–73, 1997.

4. J. T. Tou and R. C. Gonzalez. Pattern Recognition Principles. Addison-Wesley,
1974.

5. S. Weisberg. Applied Linear Regression. New York: John Wiley and Sons, 1985.
6. B.D. Ripley. Pattern Recognition and Neural Networks Cambridge: Cambridge Uni-

versity Press, 1996.
7. K.Q. Weinberger et al. Distance Metric Learning for Large Margin Nearest Neighbor

Classification. Neural Information Processing Systems. 2005
8. N. Hansen and A. Ostermeier. Completely Derandomized Self-adaptation in Evolu-

tion Strategies. Evolutionary Computation 9(2):159–195. 2001.
9. A. Ostermeier and A. Gawelczyk Nikolaus Hansen. A Derandomized Approach to

Self-Adaptation of Evolution Strategies. Evolutionary Computation. 4(2):369-380.
1994.

10. J.M. Valls and R. Aler and O. Fernández. Evolving Generalized Euclidean Dis-
tances for Training RBNN. Computing and Informatics. 26:33-43. 2007.

11. A. Sierra, and A. Echeverra. Evolutionary Discriminant Analysis. IEEE Transac-
tions on Evolutionary Computation, vol. 10 (1), 81-92, 2006

