

This is a postprint/accepted version of the following published document:

Peña-Fernández, M., et al. Microprocessor error diagnosis by trace
monitoring under laser testing. In: IEEE transactions on nuclear science,
68(8), Aug. 2021, Pp. 1651-1659

DOI: https://doi.org/10.1109/TNS.2021.3067554

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

https://doi.org/10.1109/TNS.2021.3067554
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

1


Abstract—This work explores the diagnosis capabilities of the

enriched information provided by microprocessors trace
subsystem combined with laser fault injection. Laser fault
injection campaigns with delimited architectural regions have
been accomplished on an ARM Cortex-A9 device. Experimental
results demonstrate the capability of the presented technique to
provide additional information of the various error mechanisms
that can happen in a microprocessor. A comparison with radiation
campaigns presented in previous work is also discussed, showing
that laser fault injection results are in good agreement with
neutron and proton radiation results.

Index Terms— ARM, microprocessor trace, fault tolerance,
error diagnosis, laser fault injection.

I. INTRODUCTION

N complex devices, such as microprocessors, the capabilities
to understand fault effects and diagnose errors are crucial to

design effective error mitigation solutions. In the particular case
of Commercial Off-The-Shelf (COTS) devices, such
capabilities are strongly needed to assess their use in radiation
environments, cope with radiation effects and eventually meet
dependability requirements in sensitive applications. Contrary
to radiation-hardened devices, for which RHBP (Radiation-
Hardening by Process) or RHBD (Radiation-Hardening by
Design) techniques are systematically applied to all
components of the circuit irrespective of its criticality, COTS
devices generally require ad-hoc techniques that are specifically
applied to each component or to mitigate particular types of
errors. As radiation induced soft errors cannot generally be
avoided for COTS devices, the goal is to identify the source of
errors and provide for an appropriate recovery in each case.

COTS microprocessors are becoming increasingly attractive
for space applications [1]. Compared to their radiation-
hardened counterparts, COTS microprocessors provide higher
performance, lower power consumption, lower cost and wider
availability, yet they are susceptible to radiation effects.
Therefore, they can be a good choice for low cost applications
or less critical parts of missions, provided that radiation effects
can be reduced to an acceptable level. To achieve this goal, we

This work has been supported in part by the Spanish Ministry of Science and

Innovation under project PID2019-106455GB-C21 and by the Community of
Madrid under grant IND2017/TIC-7776.

M. Peña-Fernández is with Arquimea Ingenieria SLU., Leganes, Madrid,
Spain (email: mpena@arquimea.com).

A. Lindoso, L. Entrena and M. García-Valderas are with the Department of
Electronic Technology, Universidad Carlos III de Madrid, Avda. Universidad

need to know how COTS microprocessors fail and where they
fail. However, fault diagnosis is a difficult task because many
of the internal components of a microprocessor are not directly
observable. Radiation test experiments can be used to estimate
the error cross-section, but they generally provide very limited
information about the vulnerabilities of the microprocessor
components [2].

Error diagnosis approaches are generally based on observing
errors and performing some sort of cause-effect analysis to
deduct where errors were originated [3], [4], [5], [6]. The
capability of observing the internal state of a microprocessor is
key for this purpose. In a previous work [7], trace monitoring
was used to observe microprocessor behavior under proton and
neutron irradiation, detect errors and collect information for
diagnosis. This approach takes advantage of the trace
infrastructures that are commonly included in modern
microprocessors to support debugging and profiling.

In this work we extend the error diagnosis approach proposed
in [7] by analyzing errors produced by laser fault injection. The
use of laser can provide further insight into the diagnosis
capabilities that can be achieved by trace monitoring. In
addition, the capability of the laser to focus on specific
components of the microprocessor, such as the caches or
control logic, enables to categorize the type of errors that are
produced in each of these components. Experimental results
demonstrate that the effects of faults on these components are
indeed quite different and have a distinctive pattern.

Trace information is very rich to perform error diagnosis. We
show how particular errors can be related to particular code
instructions or variables by analyzing the obtained trace
information.

Pulsed lasers have been used for a long time by the radiation
effects community [8]. In this work we seek to evaluate laser
injected errors using the high diagnosis capabilities supported
by the trace monitoring approach. Finally, laser scanning can
also be used to obtain geometrical sensitivity mappings. With
the use of trace monitoring, we can further relate the sensitivity
maps to the types of errors.

The remaining of this paper is as follows. Section II
summarizes related work. Section III describes the evaluation

30, E-28911 Leganes, Madrid, Spain (e-mail: alindoso@ing.uc3m.es;
entrena@ing.uc3m.es; mgvalder@ing.uc3m.es).
I. Lopes and V. Pouget are with the IES—UMR UM/CNRS 5214, Université
de Montpellier, F-34097 Montpellier, France (e-mail: dacostalopes@ies.univ-
montp2.fr; vincent.pouget@ies.univ-montp2.fr).

Microprocessor Error Diagnosis by Trace
Monitoring under Laser Testing

M. Peña-Fernandez, A. Lindoso, L. Entrena, I. Lopes, V. Pouget

I

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2021.3067554

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

methodology than we have used in this work. Section IV shows
the experimental results. Finally, section V presents the
conclusions of this work.

II. RELATED WORK

Microprocessors have complex architectures that present a
wide variety of erroneous behaviors when they are exposed to
radiation. Radiation can affect any part of the architecture, but
its effects deeply depend on the application in execution [9].
The executed application uses specific parts of the architecture
within a predetermined execution order and timing, increasing
with it the complexity of error diagnosis.

The analysis of errors in microprocessors is a challenging
task. When execution takes place in harsh environments, we can
easily observe the effects of errors, but it is difficult to
determine the part of the architecture that was affected by
ionized particles. Being able to correctly characterize the
microprocessors error mechanisms can lead to the isolation of
incorrect behavior and can reverberate in improvements for
mitigation techniques.

The problem of fault diagnosis of microprocessor systems
has been a matter of research since the beginning of the
microprocessor era [10]. It has been addressed mainly for
permanent errors, such as those produced by manufacturing
defects or ageing. Approaches include Design for Test (DfT)
techniques, such as scan-based BIST (Built-In Self Test) [11],
Software-Based Self-Test [12], or a combination of both [13].
In complex circuits, BIST structures are often included on chip
to support test functions and can also be used in the field. DfT
techniques usually provide high fault coverage but have to be
highly compacted to reduce the impact on hardware area.
Software-Based Self-Test execute special codes that check
critical parts of the system, such as the memories or the register
file. They are often used in critical systems to ensure integrity
when the system is put in operation or before carrying out a
critical task.

Self-testing codes are specialized for each module and are
intended to be executed on-line, but in a non-functional mode.
This approach has also been used to analyze the susceptibility
of different parts of a system to radiation-induced soft errors
[14]. To this purpose, a special code is used to continuously
stimulate and inspect some particular modules, such as
memories, internal registers or pins, when the circuit is under
the beam. Nevertheless, it is not generally possible to ascertain
the origin of errors when the test is performed with a broad
beam because of the random nature of the ion strikes and the
limited observability of the system. To control fault locations,
pulsed laser [8], heavy-ion micro-beam [15] and neutron micro-
beam [16] have been proposed as alternatives to broad-beam
ion tests.

In the literature we can find approaches that rely on intensive
fault injection to determine the relationship between errors and
the architectural parts affected by radiation. The architectural
vulnerability factor (AVF) of the architectural elements can be
determined [17], which represents the probability of occurrence
of a system error given a bit flip in a storage cell. With massive
fault injection campaigns, errors can be classified and linked to
the architectural location of the injected fault. This approach
has been used in [18] and [19]. An extended approach is used

in [20] to analyze the AVF due Multi-Bit Upsets (MBUs). The
recent work [26] proposes to overcome the limitations of AVF
combining simulation campaigns with radiation results by
means of a mathematical model which provides a reliability
figure for the different blocks of the processor. In the case of
microprocessors, this kind of approaches can provide incorrect
results because the very same observed error can be due to
misbehaviors in different parts of the architecture. For instance,
microprocessor hangs or crashes are commonly observed when
a microprocessor is exposed to radiation, but this type of error
can be due to particle impacts in several elements of the
architecture.

Intensive fault injection campaigns can be used to create fault
dictionaries which could be used for diagnosing errors when the
circuit is exposed to radiation. This approach is used in [3] and
[4]. However again, we face the same problem as exposed
before, for several architectural components misbehavior can
match with the observed error.

In [21], a methodology is developed to analyze actual field
data collected from error logs of information computing
systems. The subsystem where errors occurred could be
localized with the help of the Machine Check Architecture
(MCA). The MCA is an internal subsystem included in the
studied microprocessor which can detect and capture errors.
With the collected information, it was possible to point out the
possible cause of some soft errors.

Artificial Intelligence (AI) could be also used to solve the
relationship between observed errors and architectural damaged
locations [22]. AI techniques that have been used for fault
diagnosis include expert systems, neural networks, Petri nets
and fuzzy logic.

In general, all possible solutions increase their matching
capabilities when the amount of information gathered increases.
For that reason, new methods to obtain information may
improve diagnosis results.

Today, the trace subsystem is part of the architecture of most
microprocessors. It is used for debugging purposes when the
application is under development and is no longer needed
during regular execution. In [23], an IP is presented that gathers
trace information and observes a high-end microprocessor
(ARM Cortex-A9) behavior. In [7], this IP increases its
observation capabilities and is used for diagnosis purposes
under proton and neutron irradiation.

In this work we combine the diagnosis capabilities of the
information provided by the microprocessor’s trace subsystem
with a laser fault injection experiment, which provides accurate
fault location. With the combination of both laser injection and
enriched trace information observation we seek to improve the
understanding of errors mechanisms in microprocessors.

III. EVALUATION METHODOLOGY

A. Device under test

The Device Under Test (DUT) used in the experiments was
a Xilinx Zynq XC7Z030-1SBG485, a monolithic
programmable System-on-Chip (SoC) manufactured in 28nm
planar bulk CMOS technology. The DUT embeds a dual-core
ARM Cortex A9 processor, an SRAM-based FPGA, and many
peripherals. The DUT selection was driven by the fact that this

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2021.3067554

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

particular device is packaged without plastic cover, so it can be
used for laser testing with no package processing. During the
tests, the DUT was mounted on a PicoZed development board,
and connections were performed through the PicoZed FMC
carrier board. Both boards are manufactured by AVNET and
are commercially available.

B. Software case study

A matrix multiplication benchmark was executed on ARM
Cortex-A9 core #0 of the XC7Z030 device, running at the
nominal 650 MHz clock frequency. The benchmark enters an
infinite loop performing two consecutive phases: firstly, result
matrix R is computed by multiplying two input matrices A and
B; secondly, matrix R correctness is checked. The correctness
of result matrix is checked by comparing it with a previously
calculated golden reference, and additionally by performing
consistency checks on triplicated data. We use triplicated data
to emulate the typical approach for software hardening in a
realistic application, in which a golden reference is not
commonly available. Triplication allows us to identify and
determine the faulty value and eventually the faulty bit if the
error only affects one of the three copies. In addition, golden
reference is used only to cover the cases in which more than one
data copy is corrupted.

The benchmark used 32x32 matrix dimension composed by
32-bit integer elements. We tested three different software
versions:

- CUT1: All caches were enabled during execution. This
can be considered as the baseline benchmark.

- CUT2: All caches were disabled.
- CUT3: All caches were disabled. Program data and stack

were stored on On-Chip Memory (OCM) instead of
DRAM.

Maximum optimization effort was used for the compilation
of all software versions. This choice is frequently found in
deployed applications and can be considered as a worst-case
scenario for error diagnosis. With this configuration, the
compiler modifies the structure of the code to optimize
execution performance, so it can be more difficult to stablish a
cause-effect relation. In addition, it makes a higher use of
resources, particularly all core registers, resulting in a more
intensive exercise of the architecture.

C. Trace monitoring approach

This work uses an external Trace Monitor IP based on [7]

that observes the trace information provided by the trace
subsystem. The IP is located in the programmable logic (PL)
and connected to the processor by EMIO (Extended
Multiplexed I/Os) interface available on the device. The IP can
be configured as a peripheral through AXI bus, and it observes
the microprocessor through the trace interface.

We leverage the CoreSight subsystem, which is available on
almost every ARM processor or microcontroller nowadays, and
particularly on the Zynq device. CoreSight is a set of
components provided by ARM to support debug and trace
purposes. Among the available components on Zynq device, we
have selected and configured two trace subsystem cells: the
Program Trace Macrocell (PTM) [24] and the Instrumentation
Trace Macrocell (ITM) [25]. These two cells can send
information about the executed application and the
microprocessor behavior through the trace interface to the
Trace Monitor IP located in PL.

The PTM generates information about processor behavior by
providing the Program Counter (PC) address values during
execution. To optimize bandwidth, the PTM only generates PC
address information related with the points on the execution
where the flow can be altered, such as branches or exceptions.
PTM information is used to track the correctness of the
execution flow. The Trace Monitor IP triggers an error signal if
the microprocessor reaches an instruction outside of the
allowed address range. Data errors are tracked thanks to the
information provided by the ITM. The ITM can export through
the trace interface any 32-bit value from the program data just
by writing it from the software in the ITM stimulus registers.
Triplicated data are sent through the trace interface for the IP to
check data consistency. When a data error is found, the IP
triggers an error signal.

The trace information provided by both ITM and PTM is
monitored on-line by the Trace Monitor IP and stored in two
buffers to enable further analysis. One buffer is the Embedded
Trace Buffer, which is part of the CoreSight subsystem, and the
other is a custom design implemented in programmable logic.
When an error is detected, the buffer contents are exported and
the system also collects information about the execution
context, namely relevant microprocessor memory contents and
stack state. Error data logs are sent to the host through a serial
communication port to be analyzed afterwards. The analysis
can identify wrong addresses and wrong data by inspecting the
last executed instructions before the error was detected. The
trace information can eventually be used to reproduce the

Table I. Zones used for laser fault injection

Zone Description Injection
method

Width
(µm)

Height
(µm)

Tested on CUT1 Tested on CUT2 Tested on CUT3

Z1 L1 Data cache – CPU0

Sequential

210 390 Yes No No
Z2.1 L1 instruction cache1–CPU0 244 164 Yes No No
Z2.2 L1 instruction cache2–CPU0 210 425 Yes No No
Z3 Registers (unidentified) 230 215 Yes Yes Yes
Z4.1 L2 Cache - 1

Random

863 883 Yes No No
Z4.2 L2 Cache - 2 828 1424 Yes No No
Z5.1 OCM 1 803 416 No No Yes
Z5.2 OCM 2 802 416 No No Yes

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2021.3067554

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

execution in order to diagnose the error.

D. Laser fault injection

Laser testing was performed at the laser facility of the
University of Montpellier, using single-photon absorption. The
laser wavelength is 1064 nm with a pulse duration of 30 ps. The
beam is focused down to spot size of 1.0µm through the
backside of the 700µm thick substrate by using a 100X lens.
The laser energy is set to 300pJ, approximately twice above the
threshold to generate single bit flips. The setup of the DUT
under the laser beam is presented on Fig. 1, in which both the
test board and the laser-focusing lenses can be observed.

Fig. 1. Experimental setup detail

Fig. 2. Infrared microphotograph of the processing system of the DUT
showing the fault injection zones.

The selected zones to be injected are defined in Table I and

their localizations in the layout of the device are shown in Fig.
2. These zones cover the L2 cache, OCM, L1 instruction and
data caches and an unidentified area of registers related with the
CPU #0 core of the DUT. For each software version, we only
tested the resources in use. For example, we avoided injecting
in a cache when the executed code was not using it. The
exception for this rule was the Z3 region because the resource
associated to that zone is unidentified, so we injected it in all
versions.

Fig. 3. Block diagram of the experiment

Laser scanning is performed repeatedly on each zone with a
step size of 4µm on X and Y axes. Small regions, Z1 to Z3,
were entirely scanned in a sequential manner injecting faults in
each step. For larger regions, Z4 and Z5, injection was
performed in random locations using a bouncing ball scheme.
In any case, laser scanning and triggering is asynchronous with
the benchmark loop execution, providing randomness in the
fault injection. After each laser pulse, the error signal from the
Trace Monitor IP is sampled by an oscilloscope to detect errors,
while the benchmark output by the serial port is continuously
logged. Scans are automatically paused while reconfiguring the
DUT in the case of any error. A block diagram of the
experiment is displayed in Fig 3.

E. Relation to previous work

In this work, we extend diagnosis experiments conducted
under proton and neutron irradiation, presented in [7], by testing
a similar infrastructure under laser fault injection. The
experiment has been designed to maximize the similarities
between both tests in order to compare results. For this purpose,
the selected software application is the same in both works and
code versions are equivalent. The IP core used to detect faults
through the trace interface and the detection and diagnosis
criteria are also the same. The tested devices belong to the same
Xilinx Zynq family in both cases. However, they are not exactly
the same. While an XC7Z010 device is used in [7], an
XC7Z030 is used in this work. This difference is motivated by
the fact that the ZC7Z030 device can be obtained in a package
without plastic cover, which is more convenient for laser
testing. Nevertheless, the main architectural difference between
both chips resides in the size of the programmable logic, but the
dual-core processor, which is actually the tested region of the
chip, is exactly the same.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Fault injection campaigns have been accomplished in all
zones described in section III.D. We have defined the following
error categories to classify observed errors:

- Prefetch Abort (PA): Exception caused by a forbidden

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2021.3067554

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

memory access when an instruction is fetched.
- Data Abort (DA): Exception caused by a forbidden data

access attempt.
- Undefined Instruction (UI): Unrecognized instruction

code.
- Invalid PC (IPC): The PC address got a value which was

far outside the expected range.
- Result total errors (R): Data stored in matrix R is wrong.

This category is divided in two subcategories attending
the error multiplicity:
o Result few errors (Rf): Data stored in matrix R is

wrong in less than 25 matrix positions.
o Result many errors (Rm): Data stored in matrix R is

wrong in more than 25 matrix positions.
- Timeout (To): Processor communications timed out.
- Comm. (C): Processor communications were corrupted.

Underlying errors, if any, cannot be classified.
A total number of 20,776 faults were injected in Z1 (L1 Data

Cache) and 372 errors (1.79%) were obtained using CUT1. This
relatively high error rate can be associated to an intensive use
of this memory. Matrices are bigger than the cache: each matrix
has 32x32 elements of 32 bits, and 9 matrices (3 copies of each
matrix A, B and R) are used, giving a total figure of 36kB, while
the available L1 cache is only 32kB. Thus, L1 Data Cache is
fully used in each iteration of the benchmark. Injected faults in
Z1 give more than 99% of errors in the results (R) as depicted
in Fig. 4 for 372 errors in CUT1. More than 77% of errors
affected only few elements in the matrix while around 22%
affected more than 25 elements. The last case is probably
related to a value or a pointer stored in the cache that got
corrupted and it was used afterwards in many calculations in the
benchmark. Errors in few elements may be related to three
phenomena: 1) a fault in an input matrix value that was
refreshed before affecting many values in the result; 2) a cache
corruption in a result matrix value; or 3) an error in the cache
controller returning a wrong value, but the cached value
remained untouched.

L1 Data Cache results are in good agreement with those
presented in [7]. In that work, several versions of the same
benchmark were irradiated with different configurations.
Particularly, the difference of the version with only L1 Data
Cache enabled compared to the version with no cache enabled
was mainly related to data errors.

Fig. 4. Error histogram for Z1 (CUT1) - L1 Data Cache

In the case of Z2 (L1 Instruction Cache), 27,832 faults were
injected, obtaining 82 errors (0.29%) using CUT1. The code
size for the used application is low so just a small part of the L1
Instruction Cache is used, giving a lower error rate. Z2 error
distribution is clearly dominated by errors in which it is not
possible to continue with execution, also known as functional
interrupt errors. These errors represent 93.90% of the total, and
involve exception, timeout, communication and invalid PC
errors, which are likely produced by the corruption of the
benchmark code. The contribution of each type of error is
shown in Fig.5 for the 82 errors observed in CUT1. In
particular, communication errors may also be related to the
corruption of the code associated to the serial port, which
typically produced unexpected and eventually extremely long
messages. All errors categorized as data errors in the result
matrix are related to many wrong values. They have been
probably produced due to a faulty operation code or an incorrect
execution flow which did not produce a functional interrupt but
affected the computations in a dramatic manner.

Fig. 5. Error histogram for Z2 (CUT1) - L1 Instruction Cache

L1 Instruction Cache contribution to errors was also
evaluated under proton and neutron irradiation in [7] and it was
found to be an increment of functional interrupt errors between
the version with all caches disabled and the version with only
L1 Instruction Cache enabled. This tendency is confirmed in the
present work.

Regarding Z4 (L2 Cache), we injected 102,681 faults and
obtained 119 errors (0.12%) using CUT1. The size of the L2
cache is 512kB, much bigger than the data used by the
application, resulting in a low error rate as most of L2 Cache
area is not used by the application. Every error found in Z4 was
a Data Abort as indicated in Fig. 6 for 119 errors in CUT1. It is
known that L2 Cache is used to store data values so it could be
expected to produce also Result errors, but it is not the case.
Data Abort errors occur mainly when there is a memory access
to a memory location which is restricted by the Memory
Management Unit (MMU). Injected faults are probably
interfering with the address translation mechanism of the cache,
resulting in a wrong memory access. We suspect that this
mechanism is more sensitive to faults than the cache memory
cells themselves, so every error in cache contents ends up
masked by an earlier error in the cache control circuitry.
Because of the big size of the L2 Cache, it was not completely
injected, and only some points were randomly chosen for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2021.3067554

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

injection using a bouncing ball scheme. Once the number of
observed errors was enough to obtain statistically significant
results, we stopped injection in this area. The extremely high
incidence of Data Abort errors in L2 cache was also found in
the radiation experiments [7] and is in good agreement with the
results in this work.

Fig. 6. Error histogram for Z4 (CUT1) - L2 Cache

We injected 41312 faults in Z5 (OCM), obtaining 143 errors

(0.35%) using CUT3. Fig. 7 contains the error distribution of
Z5 (OCM) for 143 errors in CUT3. It is important to note that
in CUT3, OCM is only storing program data and stack, which,
compared to the 256kB size of the OCM, turns out that much of
it is unused, resulting in a low error rate. Every observed error
in this zone was a data error in the Result matrix. Errors
involving few wrong matrix positions are probably related with
a fault injected into the result matrix directly. However, the
cases where many faulty values are found can be related with
an erroneous input value, or an error in a pointer stored in the
stack. This is an expected behavior, because only data and stack
are stored in OCM. Obtained results are in line with those
obtained under radiation in [7] using a similar benchmark.

Fig. 7. Error histogram for Z5 (CUT3) - OCM

In the case of Unidentified Registers area, Z3, we do not

know which resource is being injected, so we try to deduct it by
exercising the architecture with all versions of the application.
We injected 4,159 faults for CUT1, obtaining 61 errors
(1.47%), which means that this resource may be intensively
used by the benchmark. In addition, 3,808 faults were injected
in Z3 for CUT2, and 5,715 faults for CUT3, obtaining 0 errors
(0%) in both cases. When injecting faults in the Z3 area using
CUT1, more than 81% of the obtained errors are related with
data, although some Data Abort exception errors are also

observed. Fig. 8 summarizes the error distribution in this zone
for the three versions of the benchmark. However, Z3 area only
shows sensitivity to errors when executing CUT1 (caches
enabled), obtaining 61 errors, and no error was observed when
caches were disabled (CUT2 and CUT3). Considering this
behavior, we can deduce that this zone is probably related in
some way to the cache operation, so in the case that caches are
not used, this zone is unused as well. Geometrically, this zone
is very close to L1 Data Cache and presents a similar error rate,
which reinforces the deduction that it is related with it.
Observed error distribution in this zone shows a high number
of Result errors (similar to L1 Data Cache error distribution)
but also a moderate number of Data Abort errors. We
hypothesize that this region could be part of the L1 Data Cache
controller as it is only used when the L1 Data Cache is used and
if a fault is injected in it, it could become either a Result error
or a Data Abort depending on whether the fault affects cache
memory cells or the address translation mechanism,
respectively.

Fig. 8. Error histogram for Z3 - unidentified registers region

Obtained trace information is very rich to perform error

diagnosis. In the aforementioned cases, the majority of errors
are similar, so we categorize them in predefined error categories
for the sake of brevity. However, further information can be
extracted by carefully analyzing the collected evidences about
the errors.

As an example, we analyze in detail one of the Invalid PC
errors on L1 Instruction Cache. From the trace information we
can obtain the PC values before the error. Table II shows the
values for the PC in the moment of the error, normalized as t,
and for two instants earlier, namely t-1 and t-2. It is important
to note that the trace only exports PC values in points where the
program flow can be changed (mainly branches and
exceptions). By comparing the PC progression with the
disassembled code depicted in Table III we can see that the
error is a bit-flip in an instruction code provoking a change of
0x00100000 in the offset of the beq instruction located at
address 0x00130240. This change results in an instruction
code of 0x0a100013 instead of 0x0a000013, causing a
branch to 0x00230294 instead of 0x00130294.

Another example of trace diagnosis capabilities is that an out-
of-range loop index was found among the Timeout errors on L1
Instruction Cache. In four error evidences, it was found that the
matrix multiplication loop index was out of the 0-31 range,
causing an excessive execution time leading to a timeout error.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2021.3067554

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

We could observe this situation because we inserted specific
instructions in the code for the ITM to export the loop index
value through the trace.

TABLE II

PC PROGRESSION TO INVALID VALUE

t-2 t-1 t
0x00130244 0x00130234 0x00230294

TABLE III

DETAILED ADDRESS CONTENTS

Address Content Instruction
0x00130230 ea000003 b 130244
0x00130234 e2822010 add r2, r2, #16
0x00130238 e28cc010 add ip, ip, #16
0x0013023C e1520004 cmp r2, r4
0x00130240 0a000013 beq 130294
0x00130244 e992000a ldmib r2, {r1, r3}
0x00130248 e592000c ldr r0, [r2, #12]
0x0013024C e5871000 str r1, [r7]
0x00130250 e1530000 cmp r3,r0
0x00130254 01510003 cmpeq r1, r3
0x00130258 e5863000 str r3, [r6]
0x0013025C 13a0e001 movne lr, #1
0x00130260 03a03001 moveq r3, #1
0x00130264 13a03000 movne r3, #0
0x00130268 e5850000 str r0, [r5]
0x0013026C 11a0800e movne r8, lr
0x00130270 1affffef bne 130234
0x00130274 e59c0004 ldr r0, [ip, #4]

Errors on matrix data can also be analyzed in detail. When

injecting L1 Data Cache and OCM, errors in a single value,
including bit-flips, can be identified by comparing triplicated
data sent through the trace. Such errors may be associated to a
fault injected on a stored result value. However, we found at
least two cases in which none of the three copies of a value
matched when injecting L1 Data Cache and one more in OCM.
By comparing the downloaded memory contents in the moment
of those errors with the golden reference we obtained that in one
case (L1 Data Cache) there was one correct value and two
incorrect values while in the other two cases none of the value
copies were correct. As demonstrated, when introducing the
golden reference, we can refine the case granularity and
discover more cases. This is particularly relevant attending to
results obtained for Z3 region. In seven cases, some of the
matrix redundant values were equal, but wrong, in all the copies
at the same time. This case is unique for Z3 so it could allow to
link similar errors to a fault within this region. Additionally, at
least two cases in which two redundant values were equal, but
wrong, were found on L1 Data Cache and Z3 regions.

The trace information about errors can also be used to obtain
not only particular-case results, as in the last two examples, but
also to extract error tendencies. As we have a continuous stream
of trace information, we can know what happened before an
error. In Fig. 9, it is presented the last instruction before 119
Data Abort errors related to L2 Cache when executing CUT1.
It can be found that some addresses are much more prone to

Data Abort error than others. In fact, the instruction at address
0x00130164 accumulates almost 50% of error incidence.
Attending to such information, a software designer could put
more effort to harden the code in the most problematic parts.

Fig. 9. Last instructions before Data Aborts related to L2 Cache (CUT1)

Results shown in this work are in good agreement with those

obtained in previous radiation experiments [7]. Nevertheless, it
must be noted that radiation testing and laser injection are quite
different, so it is important to be careful when comparing results
from both types of experiments. In radiation testing, it is
possible to enable or disable some resources to isolate the
contribution of each one to the final error distribution as we did
in [7]. However, there are other resources, such as the registers,
the pipeline, the arithmetic unit or the processor core itself, that
cannot be disabled, because they are needed for the device to
perform properly. Thus, radiation testing will always provide a
result of the combined contribution of each resource to the total
number of errors, given by the sensitivity of each resource. In
contrast, laser testing can completely focus on specific
resources and provide error results which can be closely related
to them. We can conclude that the similarity of the results
between radiation testing and laser scanning will be affected by
the sensitivity of the resources under test. In the radiation
campaigns performed in [7], L2 Cache, OCM, L1 Instruction
Cache and L1 Data Cache were found to have a high sensitivity
as they incremented the cross section by one to four orders of
magnitude depending on the case. That high error sensitivity is
probably a major reason for the agreements found in the results
of both works.

Laser scanning allows us to plot error distribution on an XY
graph, so it is possible to evaluate if error occurrence follows
any recognizable pattern. Fig. 10 show the geometrical
distribution for some of the previously presented errors, namely
for L1 Data and Instruction caches for CUT1, while Fig. 11
shows the geometrical distribution by category for the Z3
region also for CUT1.

It is remarkable that in the case of L1 Data Cache, Fig. 10 a),
errors are spread across the entire studied area so no correlation
between the layout geometry and error appearance can be
inferred. Matrices are bigger than the cache, so the cache is
entirely used and often refreshed. Consequently, errors are
expected to have a similar effect on execution in any position.

The case of L1 Instruction Cache is the opposite of the L1

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2021.3067554

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Data Cache, as the executed code is very short and fits
completely in the instruction cache. It can be observed in Fig.
10 b) that only some parts of the memory are producing errors.
Particularly, there are many errors accumulated in a horizontal
line at -1530µm.

Fig. 10. Error geometrical distribution (CUT1)

Fig. 11. Error geometrical distribution by category (CUT1)

The geometrical error distribution in Z3 region (unidentified
registers) presents very sharply delimited error regions. To
clarify the impact of each area in the error count, we take
advantage of the capability of this method to generate
sensitivity maps by correlating error types with the geometry of
the device. A colored plot of the error geometrical distribution
for Z3 zone is presented in Fig. 11. We distinguish in it 3 types
of errors: Data Abort exceptions, Result few errors and Result
many errors. It can be clearly observed that there are two zones
contributing only to Data Abort errors and four zones
contributing to errors in result matrix, in which the geometrical
distribution of few errors and many errors on result matrix can
be discriminated.

V. CONCLUSIONS

This work demonstrates the use of trace information to
diagnose laser-induced errors. Diagnosis information obtained
from the memory and the trace interface allows us to classify
the observed errors in several categories and enables a rich
analysis. By correlating the laser position with diagnosis

information, we obtained that different error types are found
depending on the injected area. Moreover, their geometrical and
statistical distribution has a highly distinctive pattern, like a
fingerprint.

Obtained diagnosis results allowed to identify functional
regions on a Cortex-A9 processor thanks to the observed error
statistical distribution. It must be pointed out that this
information is not generally available for COTS and we are able
to obtain it by combining accurate laser fault injection and
intensive trace information observation.

Moreover, the presented approach has been demonstrated to
be highly accurate and allow to identify the faulty bit on
detected control-flow errors.

Laser fault injection results are in good agreement with
radiation test results and confirm some of the hypotheses made
in previous work [7]. By combining both works, we
demonstrate that the proposed technique can effectively
identify which processor resource has the highest sensitivity to
each error type.

REFERENCES
[1] M. Pignol, "COTS-based applications in space avionics," 2010 Design,

Automation & Test in Europe Conf. (DATE 2010), pp. 1213-1219,
Dresden, 2010.

[2] H. Quinn, T. Fairbanks, J. L. Tripp, G. Duran and B. Lopez, "Single-Event
Effects in Low-Cost, Low-Power Microprocessors," 2014 IEEE
Radiation Effects Data Workshop (REDW), pp. 1-9, 2014.

[3] S. Wei, F. Tongshun, and D. Mingfang. "Research for digital circuit fault
testing and diagnosis techniques". Proc. Intl. Conf. on Test and
Measurement, vol. 1, pp. 330-333, Dec. 2009.

[4] F. A. Bower, D. J. Sorin, and S. Ozev. "Online diagnosis of hard faults in
microprocessors". ACM Trans. on Architecture and Code Optimization
(TACO), vol. 4, no. 2, Article 8, June 2007.

[5] J. M. Mogollon, J. Napoles, H. Guzman-Miranda, and M. A. Aguirre.
"Real Time SEU Detection and Diagnosis for Safety or Mission-Critical
ICs Using HASH Library-Based Fault Dictionaries". Proc. RADECS,
paper J-3, pp.705-710, Sept. 2011.

[6] J. M. Mogollon, J. Napoles, H. Guzman-Miranda, and M. A. Aguirre.
"Metrics for the Measurement of the Quality of Stimuli in Radiation
Testing Using Fast Hardware Emulation". IEEE Trans. on Nuclear
Science, vol. 60, no. 4, pp. 2456-2460, Aug. 2013.

[7] M. Peña-Fernandez, A. Lindoso, L. Entrena and M. Garcia-Valderas,
"The Use of Microprocessor Trace Infrastructures for Radiation-Induced
Fault Diagnosis," IEEE Trans. on Nuclear Science, vol. 67, no. 1, pp. 126-
134, Jan. 2020.

[8] S. P. Buchner, F. Miller, V. Pouget, and D. P. McMorrow. “Pulsed-Laser
Testing for Single-Event Effects Investigations”. IEEE Trans. on Nuclear
Science, vol. 60, no. 3, pp. 1852–1875, June 2013.

[9] L. Entrena, A. Lindoso, M. Garcia-Valderas, M. Portela and C. Lopez-
Ongil, “Analysis of SET Effects in a PIC Microprocessor for Selective
Hardening”, IEEE Trans on Nuclear Science, vol. 58, no. 3, pp. 1078-
1085, Feb. 2011.

[10] V. P. Srini, "Special Feature: Fault Diagnosis of Microprocessor
Systems," Computer, vol. 10, no. 1, pp. 60-65, Jan. 1977.

[11] M. Elm and H. Wunderlich, "BISD: Scan-based Built-In self-diagnosis,"
2010 Design, Automation & Test in Europe Conf. (DATE 2010), pp.
1243-1248, 2010.

[12] P. Bernardi, R. Cantoro, S. De Luca, E. Sanchez, A. Sansonetti and G.
Squillero, "Software-Based Self-Test Techniques for Dual-Issue
Embedded Processors," IEEE Trans. on Emerging Topics in Computing,
vol. 8, no. 2, pp. 464-477, April-June 2020.

[13] M. Ulbricht, M. Schölzel, T. Koal and H. T. Vierhaus, "A new
hierarchical built-in self-test with on-chip diagnosis for VLIW
processors," 14th IEEE Intl. Symp. on Design and Diagnostics of
Electronic Circuits and Systems, pp. 143-146, Cottbus, 2011.

[14] G. M. Swift, F. F. Fannanesh, S. M. Guertin, F. Irom and D. G. Millward,
"Single-event upset in the PowerPC750 microprocessor". IEEE Trans. on
Nuclear Science, vol. 48, no. 6, pp. 1822-1827, Dec. 2001.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2021.3067554

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

[15] F. W. Sexton. “Microbeam Studies of Single-Event Effects”. IEEE Trans.
on Nuclear Science, vol. 43, no. 2, pp. 687–695, Apr. 1996.

[16] Y. Xu et al. “An Accelerator-Based Neutron Microbeam System for
Studies of Radiation Effects”. Radiation Protection Dosimetry, vol. 145,
no. 4, pp. 373–376, Dec. 2011.

[17] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt and T. Austin, "A
systematic methodology to compute the architectural vulnerability factors
for a high-performance microprocessor". Proc. 36th Annual IEEE/ACM
Intl. Symp. on Microarchitecture (MICRO-36), pp. 29-40, Dec. 2003.

[18] R. Velazco, S. Rezgui and R. Ecoffet, "Predicting error rate for
microprocessor-based digital architectures through C.E.U. (Code
Emulating Upsets) injection". IEEE Trans. on Nuclear Science, vol. 47,
no. 6, pp. 2405-2411, Dec. 2000.

[19] R. Mansour and Velazco, “An automated SEU fault-injection method and
tool for HDL-based Designs”. IEEE Trans. on Nuclear Science, vol. 60,
no. 4, pp. 2728–2733, Aug. 2013.

[20] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas and D.
Gizopoulos, "Multi-Bit Upsets Vulnerability Analysis of Modern
Microprocessors," 2019 IEEE Intl. Symp. on Workload Characterization
(IISWC), pp. 119-130, 2019.

[21] S. Z. Shazli, M. Abdul-Aziz, M. B. Tahoori and D. R. Kaeli, "A Field
Analysis of System-level Effects of Soft Errors Occurring in
Microprocessors used in Information System”, IEEE Intl. Test Conf.,
paper 24.3, Oct. 2008.

[22] D.V. Kodavade, S.D.Apte, “Troubleshooting Microprocessor Based
System using An Object Oriented Expert System”. Intl. Journal of Adv.
Computer Science and Applications, vol. 3, no.5, pp. 111-116, 2011.

[23] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y.
Morilla and P. Martín-Holgado, "Online error detection through trace
infrastructure in ARM microprocessors". IEEE Trans. on Nuclear
Science, vol. 66, no. 7, pp. 1457-1464, July 2019.

[24] “CoreSight Program Flow Trace. Architecture Specification”, ARM Ltd.,
IHI0035B, 2011.

[25] “CoreSight Components. Technical Reference Manual”, ARM Ltd.,
DDI0314H, 2009.

[26] A. Serrano-Cases, L. M. Reyneri, Y. Morilla, S. Cuenca-Asensi and A.
Martínez-Álvarez, "Empirical Mathematical Model of Microprocessor
Sensitivity and Early Prediction to Proton and Neutron Radiation-Induced
Soft Errors," IEEE Trans. on Nuclear Science, vol. 67, no. 7, pp. 1511-
1520, July 2020.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNS.2021.3067554

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

	portadilla_postprint_IEEE
	Peña-Fernández, M., et al. Microprocessor error diagnosis by trace monitoring under laser testing. In: IEEE transactions on nuclear science, 68(8), Aug. 2021, Pp. 1651-1659
	DOI: https://doi.org/10.1109/TNS.2021.3067554

	TNS3067554.pdf

