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 
Abstract—This work explores the diagnosis capabilities of the 

enriched information provided by microprocessors trace 
subsystem combined with laser fault injection. Laser fault 
injection campaigns with delimited architectural regions have 
been accomplished on an ARM Cortex-A9 device. Experimental 
results demonstrate the capability of the presented technique to 
provide additional information of the various error mechanisms 
that can happen in a microprocessor. A comparison with radiation 
campaigns presented in previous work is also discussed, showing 
that laser fault injection results are in good agreement with 
neutron and proton radiation results. 
 

Index Terms— ARM, microprocessor trace, fault tolerance, 
error diagnosis, laser fault injection. 

 

I. INTRODUCTION 

N complex devices, such as microprocessors, the capabilities 
to understand fault effects and diagnose errors are crucial to 

design effective error mitigation solutions. In the particular case 
of Commercial Off-The-Shelf (COTS) devices, such 
capabilities are strongly needed to assess their use in radiation 
environments, cope with radiation effects and eventually meet 
dependability requirements in sensitive applications. Contrary 
to radiation-hardened devices, for which RHBP (Radiation-
Hardening by Process) or RHBD (Radiation-Hardening by 
Design) techniques are systematically applied to all 
components of the circuit irrespective of its criticality, COTS 
devices generally require ad-hoc techniques that are specifically 
applied to each component or to mitigate particular types of 
errors. As radiation induced soft errors cannot generally be 
avoided for COTS devices, the goal is to identify the source of 
errors and provide for an appropriate recovery in each case.  

COTS microprocessors are becoming increasingly attractive 
for space applications [1]. Compared to their radiation-
hardened counterparts, COTS microprocessors provide higher 
performance, lower power consumption, lower cost and wider 
availability, yet they are susceptible to radiation effects. 
Therefore, they can be a good choice for low cost applications 
or less critical parts of missions, provided that radiation effects 
can be reduced to an acceptable level. To achieve this goal, we 
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need to know how COTS microprocessors fail and where they 
fail. However, fault diagnosis is a difficult task because many 
of the internal components of a microprocessor are not directly 
observable. Radiation test experiments can be used to estimate 
the error cross-section, but they generally provide very limited 
information about the vulnerabilities of the microprocessor 
components [2]. 

Error diagnosis approaches are generally based on observing 
errors and performing some sort of cause-effect analysis to 
deduct where errors were originated [3], [4], [5], [6]. The 
capability of observing the internal state of a microprocessor is 
key for this purpose. In a previous work [7], trace monitoring 
was used to observe microprocessor behavior under proton and 
neutron irradiation, detect errors and collect information for 
diagnosis. This approach takes advantage of the trace 
infrastructures that are commonly included in modern 
microprocessors to support debugging and profiling.  

In this work we extend the error diagnosis approach proposed 
in [7] by analyzing errors produced by laser fault injection. The 
use of laser can provide further insight into the diagnosis 
capabilities that can be achieved by trace monitoring. In 
addition, the capability of the laser to focus on specific 
components of the microprocessor, such as the caches or 
control logic, enables to categorize the type of errors that are 
produced in each of these components. Experimental results 
demonstrate that the effects of faults on these components are 
indeed quite different and have a distinctive pattern.  

Trace information is very rich to perform error diagnosis. We 
show how particular errors can be related to particular code 
instructions or variables by analyzing the obtained trace 
information. 

Pulsed lasers have been used for a long time by the radiation 
effects community [8]. In this work we seek to evaluate laser 
injected errors using the high diagnosis capabilities supported 
by the trace monitoring approach. Finally, laser scanning can 
also be used to obtain geometrical sensitivity mappings. With 
the use of trace monitoring, we can further relate the sensitivity 
maps to the types of errors. 

The remaining of this paper is as follows. Section II 
summarizes related work. Section III describes the evaluation 
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methodology than we have used in this work. Section IV shows 
the experimental results. Finally, section V presents the 
conclusions of this work. 

II. RELATED WORK 

Microprocessors have complex architectures that present a 
wide variety of erroneous behaviors when they are exposed to 
radiation. Radiation can affect any part of the architecture, but 
its effects deeply depend on the application in execution [9]. 
The executed application uses specific parts of the architecture 
within a predetermined execution order and timing, increasing 
with it the complexity of error diagnosis.  

The analysis of errors in microprocessors is a challenging 
task. When execution takes place in harsh environments, we can 
easily observe the effects of errors, but it is difficult to 
determine the part of the architecture that was affected by 
ionized particles. Being able to correctly characterize the 
microprocessors error mechanisms can lead to the isolation of 
incorrect behavior and can reverberate in improvements for 
mitigation techniques. 

The problem of fault diagnosis of microprocessor systems 
has been a matter of research since the beginning of the 
microprocessor era [10]. It has been addressed mainly for 
permanent errors, such as those produced by manufacturing 
defects or ageing. Approaches include Design for Test (DfT) 
techniques, such as scan-based BIST (Built-In Self Test) [11], 
Software-Based Self-Test [12], or a combination of both [13]. 
In complex circuits, BIST structures are often included on chip 
to support test functions and can also be used in the field. DfT 
techniques usually provide high fault coverage but have to be 
highly compacted to reduce the impact on hardware area.  
Software-Based Self-Test execute special codes that check 
critical parts of the system, such as the memories or the register 
file. They are often used in critical systems to ensure integrity 
when the system is put in operation or before carrying out a 
critical task. 

Self-testing codes are specialized for each module and are 
intended to be executed on-line, but in a non-functional mode. 
This approach has also been used to analyze the susceptibility 
of different parts of a system to radiation-induced soft errors 
[14]. To this purpose, a special code is used to continuously 
stimulate and inspect some particular modules, such as 
memories, internal registers or pins, when the circuit is under 
the beam. Nevertheless, it is not generally possible to ascertain 
the origin of errors when the test is performed with a broad 
beam because of the random nature of the ion strikes and the 
limited observability of the system. To control fault locations, 
pulsed laser [8], heavy-ion micro-beam [15] and neutron micro-
beam [16] have been proposed as alternatives to broad-beam 
ion tests.  

In the literature we can find approaches that rely on intensive 
fault injection to determine the relationship between errors and 
the architectural parts affected by radiation. The architectural 
vulnerability factor (AVF) of the architectural elements can be 
determined [17], which represents the probability of occurrence 
of a system error given a bit flip in a storage cell. With massive 
fault injection campaigns, errors can be classified and linked to 
the architectural location of the injected fault. This approach 
has been used in [18] and [19]. An extended approach is used 

in [20] to analyze the AVF due Multi-Bit Upsets (MBUs). The 
recent work [26] proposes to overcome the limitations of AVF 
combining simulation campaigns with radiation results by 
means of a mathematical model which provides a reliability 
figure for the different blocks of the processor. In the case of 
microprocessors, this kind of approaches can provide incorrect 
results because the very same observed error can be due to 
misbehaviors in different parts of the architecture. For instance, 
microprocessor hangs or crashes are commonly observed when 
a microprocessor is exposed to radiation, but this type of error 
can be due to particle impacts in several elements of the 
architecture. 

Intensive fault injection campaigns can be used to create fault 
dictionaries which could be used for diagnosing errors when the 
circuit is exposed to radiation. This approach is used in [3] and 
[4]. However again, we face the same problem as exposed 
before, for several architectural components misbehavior can 
match with the observed error. 

In [21], a methodology is developed to analyze actual field 
data collected from error logs of information computing 
systems. The subsystem where errors occurred could be 
localized with the help of the Machine Check Architecture 
(MCA). The MCA is an internal subsystem included in the 
studied microprocessor which can detect and capture errors. 
With the collected information, it was possible to point out the 
possible cause of some soft errors. 

Artificial Intelligence (AI) could be also used to solve the 
relationship between observed errors and architectural damaged 
locations [22]. AI techniques that have been used for fault 
diagnosis include expert systems, neural networks, Petri nets 
and fuzzy logic.  

In general, all possible solutions increase their matching 
capabilities when the amount of information gathered increases. 
For that reason, new methods to obtain information may 
improve diagnosis results. 

Today, the trace subsystem is part of the architecture of most 
microprocessors. It is used for debugging purposes when the 
application is under development and is no longer needed 
during regular execution. In [23], an IP is presented that gathers 
trace information and observes a high-end microprocessor 
(ARM Cortex-A9) behavior. In [7], this IP increases its 
observation capabilities and is used for diagnosis purposes 
under proton and neutron irradiation.  

In this work we combine the diagnosis capabilities of the 
information provided by the microprocessor’s trace subsystem 
with a laser fault injection experiment, which provides accurate 
fault location. With the combination of both laser injection and 
enriched trace information observation we seek to improve the 
understanding of errors mechanisms in microprocessors. 

III. EVALUATION METHODOLOGY 

A. Device under test 

The Device Under Test (DUT) used in the experiments was 
a Xilinx Zynq XC7Z030-1SBG485, a monolithic 
programmable System-on-Chip (SoC) manufactured in 28nm 
planar bulk CMOS technology. The DUT embeds a dual-core 
ARM Cortex A9 processor, an SRAM-based FPGA, and many 
peripherals. The DUT selection was driven by the fact that this 
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particular device is packaged without plastic cover, so it can be 
used for laser testing with no package processing. During the 
tests, the DUT was mounted on a PicoZed development board, 
and connections were performed through the PicoZed FMC 
carrier board. Both boards are manufactured by AVNET and 
are commercially available. 

B. Software case study 

A matrix multiplication benchmark was executed on ARM 
Cortex-A9 core #0 of the XC7Z030 device, running at the 
nominal 650 MHz clock frequency. The benchmark enters an 
infinite loop performing two consecutive phases: firstly, result 
matrix R is computed by multiplying two input matrices A and 
B; secondly, matrix R correctness is checked. The correctness 
of result matrix is checked by comparing it with a previously 
calculated golden reference, and additionally by performing 
consistency checks on triplicated data. We use triplicated data 
to emulate the typical approach for software hardening in a 
realistic application, in which a golden reference is not 
commonly available. Triplication allows us to identify and 
determine the faulty value and eventually the faulty bit if the 
error only affects one of the three copies. In addition, golden 
reference is used only to cover the cases in which more than one 
data copy is corrupted. 

The benchmark used 32x32 matrix dimension composed by 
32-bit integer elements. We tested three different software 
versions: 

- CUT1: All caches were enabled during execution. This 
can be considered as the baseline benchmark. 

- CUT2: All caches were disabled.  
- CUT3: All caches were disabled. Program data and stack 

were stored on On-Chip Memory (OCM) instead of 
DRAM. 

Maximum optimization effort was used for the compilation 
of all software versions. This choice is frequently found in 
deployed applications and can be considered as a worst-case 
scenario for error diagnosis. With this configuration, the 
compiler modifies the structure of the code to optimize 
execution performance, so it can be more difficult to stablish a 
cause-effect relation. In addition, it makes a higher use of 
resources, particularly all core registers, resulting in a more 
intensive exercise of the architecture. 

C.  Trace monitoring approach 

This work uses an external Trace Monitor IP based on [7] 

that observes the trace information provided by the trace 
subsystem. The IP is located in the programmable logic (PL) 
and connected to the processor by EMIO (Extended 
Multiplexed I/Os) interface available on the device. The IP can 
be configured as a peripheral through AXI bus, and it observes 
the microprocessor through the trace interface. 

We leverage the CoreSight subsystem, which is available on 
almost every ARM processor or microcontroller nowadays, and 
particularly on the Zynq device. CoreSight is a set of 
components provided by ARM to support debug and trace 
purposes. Among the available components on Zynq device, we 
have selected and configured two trace subsystem cells: the 
Program Trace Macrocell (PTM) [24] and the Instrumentation 
Trace Macrocell (ITM) [25]. These two cells can send 
information about the executed application and the 
microprocessor behavior through the trace interface to the 
Trace Monitor IP located in PL.  

The PTM generates information about processor behavior by 
providing the Program Counter (PC) address values during 
execution. To optimize bandwidth, the PTM only generates PC 
address information related with the points on the execution 
where the flow can be altered, such as branches or exceptions. 
PTM information is used to track the correctness of the 
execution flow. The Trace Monitor IP triggers an error signal if 
the microprocessor reaches an instruction outside of the 
allowed address range. Data errors are tracked thanks to the 
information provided by the ITM. The ITM can export through 
the trace interface any 32-bit value from the program data just 
by writing it from the software in the ITM stimulus registers. 
Triplicated data are sent through the trace interface for the IP to 
check data consistency. When a data error is found, the IP 
triggers an error signal.  

The trace information provided by both ITM and PTM is 
monitored on-line by the Trace Monitor IP and stored in two 
buffers to enable further analysis. One buffer is the Embedded 
Trace Buffer, which is part of the CoreSight subsystem, and the 
other is a custom design implemented in programmable logic. 
When an error is detected, the buffer contents are exported and 
the system also collects information about the execution 
context, namely relevant microprocessor memory contents and 
stack state. Error data logs are sent to the host through a serial 
communication port to be analyzed afterwards. The analysis 
can identify wrong addresses and wrong data by inspecting the 
last executed instructions before the error was detected. The 
trace information can eventually be used to reproduce the 

Table I. Zones used for laser fault injection 

Zone  Description Injection 
method 

Width 
(µm) 

Height 
(µm) 

Tested on CUT1 Tested on CUT2 Tested on CUT3 

Z1 L1 Data cache – CPU0 

Sequential 

210 390 Yes No No 
Z2.1 L1 instruction cache1–CPU0 244 164 Yes No No 
Z2.2 L1 instruction cache2–CPU0 210 425 Yes No No 
Z3 Registers (unidentified) 230 215 Yes Yes Yes 
Z4.1 L2 Cache - 1 

Random 

863 883 Yes No No 
Z4.2 L2 Cache - 2 828 1424 Yes No No 
Z5.1 OCM 1 803 416 No No Yes 
Z5.2 OCM 2 802 416 No No Yes 
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execution in order to diagnose the error.  

D. Laser fault injection 

Laser testing was performed at the laser facility of the 
University of Montpellier, using single-photon absorption. The 
laser wavelength is 1064 nm with a pulse duration of 30 ps. The 
beam is focused down to spot size of 1.0µm through the 
backside of the 700µm thick substrate by using a 100X lens. 
The laser energy is set to 300pJ, approximately twice above the 
threshold to generate single bit flips. The setup of the DUT 
under the laser beam is presented on Fig. 1, in which both the 
test board and the laser-focusing lenses can be observed. 

 

 
 

Fig. 1. Experimental setup detail 
 

 
 

Fig. 2. Infrared microphotograph of the processing system of the DUT 
showing the fault injection zones. 

 
The selected zones to be injected are defined in Table I and 

their localizations in the layout of the device are shown in Fig. 
2. These zones cover the L2 cache, OCM, L1 instruction and 
data caches and an unidentified area of registers related with the 
CPU #0 core of the DUT. For each software version, we only 
tested the resources in use. For example, we avoided injecting 
in a cache when the executed code was not using it. The 
exception for this rule was the Z3 region because the resource 
associated to that zone is unidentified, so we injected it in all 
versions.  

 

 
 

Fig. 3. Block diagram of the experiment 
 

Laser scanning is performed repeatedly on each zone with a 
step size of 4µm on X and Y axes. Small regions, Z1 to Z3, 
were entirely scanned in a sequential manner injecting faults in 
each step. For larger regions, Z4 and Z5, injection was 
performed in random locations using a bouncing ball scheme. 
In any case, laser scanning and triggering is asynchronous with 
the benchmark loop execution, providing randomness in the 
fault injection. After each laser pulse, the error signal from the 
Trace Monitor IP is sampled by an oscilloscope to detect errors, 
while the benchmark output by the serial port is continuously 
logged. Scans are automatically paused while reconfiguring the 
DUT in the case of any error. A block diagram of the 
experiment is displayed in Fig 3. 

E. Relation to previous work 

In this work, we extend diagnosis experiments conducted 
under proton and neutron irradiation, presented in [7], by testing 
a similar infrastructure under laser fault injection. The 
experiment has been designed to maximize the similarities 
between both tests in order to compare results. For this purpose, 
the selected software application is the same in both works and 
code versions are equivalent. The IP core used to detect faults 
through the trace interface and the detection and diagnosis 
criteria are also the same. The tested devices belong to the same 
Xilinx Zynq family in both cases. However, they are not exactly 
the same. While an XC7Z010 device is used in [7], an 
XC7Z030 is used in this work. This difference is motivated by 
the fact that the ZC7Z030 device can be obtained in a package 
without plastic cover, which is more convenient for laser 
testing. Nevertheless, the main architectural difference between 
both chips resides in the size of the programmable logic, but the 
dual-core processor, which is actually the tested region of the 
chip, is exactly the same. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

Fault injection campaigns have been accomplished in all 
zones described in section III.D. We have defined the following 
error categories to classify observed errors: 

- Prefetch Abort (PA): Exception caused by a forbidden 
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memory access when an instruction is fetched. 
- Data Abort (DA): Exception caused by a forbidden data 

access attempt. 
- Undefined Instruction (UI): Unrecognized instruction 

code. 
- Invalid PC (IPC): The PC address got a value which was 

far outside the expected range. 
- Result total errors (R): Data stored in matrix R is wrong. 

This category is divided in two subcategories attending 
the error multiplicity:  
o Result few errors (Rf): Data stored in matrix R is 

wrong in less than 25 matrix positions. 
o Result many errors (Rm): Data stored in matrix R is 

wrong in more than 25 matrix positions. 
- Timeout (To): Processor communications timed out. 
- Comm. (C): Processor communications were corrupted. 

Underlying errors, if any, cannot be classified. 
A total number of 20,776 faults were injected in Z1 (L1 Data 

Cache) and 372 errors (1.79%) were obtained using CUT1. This 
relatively high error rate can be associated to an intensive use 
of this memory. Matrices are bigger than the cache: each matrix 
has 32x32 elements of 32 bits, and 9 matrices (3 copies of each 
matrix A, B and R) are used, giving a total figure of 36kB, while 
the available L1 cache is only 32kB. Thus, L1 Data Cache is 
fully used in each iteration of the benchmark. Injected faults in 
Z1 give more than 99% of errors in the results (R) as depicted 
in Fig. 4 for 372 errors in CUT1. More than 77% of errors 
affected only few elements in the matrix while around 22% 
affected more than 25 elements. The last case is probably 
related to a value or a pointer stored in the cache that got 
corrupted and it was used afterwards in many calculations in the 
benchmark. Errors in few elements may be related to three 
phenomena: 1) a fault in an input matrix value that was 
refreshed before affecting many values in the result; 2) a cache 
corruption in a result matrix value; or 3) an error in the cache 
controller returning a wrong value, but the cached value 
remained untouched. 

L1 Data Cache results are in good agreement with those 
presented in [7]. In that work, several versions of the same 
benchmark were irradiated with different configurations. 
Particularly, the difference of the version with only L1 Data 
Cache enabled compared to the version with no cache enabled 
was mainly related to data errors.  

 

 
 

Fig. 4. Error histogram for Z1 (CUT1) - L1 Data Cache 
 

In the case of Z2 (L1 Instruction Cache), 27,832 faults were 
injected, obtaining 82 errors (0.29%) using CUT1. The code 
size for the used application is low so just a small part of the L1 
Instruction Cache is used, giving a lower error rate. Z2 error 
distribution is clearly dominated by errors in which it is not 
possible to continue with execution, also known as functional 
interrupt errors. These errors represent 93.90% of the total, and 
involve exception, timeout, communication and invalid PC 
errors, which are likely produced by the corruption of the 
benchmark code. The contribution of each type of error is 
shown in Fig.5 for the 82 errors observed in CUT1. In 
particular, communication errors may also be related to the 
corruption of the code associated to the serial port, which 
typically produced unexpected and eventually extremely long 
messages. All errors categorized as data errors in the result 
matrix are related to many wrong values. They have been 
probably produced due to a faulty operation code or an incorrect 
execution flow which did not produce a functional interrupt but 
affected the computations in a dramatic manner. 

 

 
 

Fig. 5. Error histogram for Z2 (CUT1) - L1 Instruction Cache 
 

L1 Instruction Cache contribution to errors was also 
evaluated under proton and neutron irradiation in [7] and it was 
found to be an increment of functional interrupt errors between 
the version with all caches disabled and the version with only 
L1 Instruction Cache enabled. This tendency is confirmed in the 
present work. 

Regarding Z4 (L2 Cache), we injected 102,681 faults and 
obtained 119 errors (0.12%) using CUT1. The size of the L2 
cache is 512kB, much bigger than the data used by the 
application, resulting in a low error rate as most of L2 Cache 
area is not used by the application. Every error found in Z4 was 
a Data Abort as indicated in Fig. 6 for 119 errors in CUT1. It is 
known that L2 Cache is used to store data values so it could be 
expected to produce also Result errors, but it is not the case. 
Data Abort errors occur mainly when there is a memory access 
to a memory location which is restricted by the Memory 
Management Unit (MMU). Injected faults are probably 
interfering with the address translation mechanism of the cache, 
resulting in a wrong memory access. We suspect that this 
mechanism is more sensitive to faults than the cache memory 
cells themselves, so every error in cache contents ends up 
masked by an earlier error in the cache control circuitry. 
Because of the big size of the L2 Cache, it was not completely 
injected, and only some points were randomly chosen for 
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injection using a bouncing ball scheme. Once the number of 
observed errors was enough to obtain statistically significant 
results, we stopped injection in this area. The extremely high 
incidence of Data Abort errors in L2 cache was also found in 
the radiation experiments [7] and is in good agreement with the 
results in this work. 

 

 
 

Fig. 6. Error histogram for Z4 (CUT1) - L2 Cache 
 
We injected 41312 faults in Z5 (OCM), obtaining 143 errors 

(0.35%) using CUT3. Fig. 7 contains the error distribution of 
Z5 (OCM) for 143 errors in CUT3. It is important to note that 
in CUT3, OCM is only storing program data and stack, which, 
compared to the 256kB size of the OCM, turns out that much of 
it is unused, resulting in a low error rate. Every observed error 
in this zone was a data error in the Result matrix. Errors 
involving few wrong matrix positions are probably related with 
a fault injected into the result matrix directly. However, the 
cases where many faulty values are found can be related with 
an erroneous input value, or an error in a pointer stored in the 
stack. This is an expected behavior, because only data and stack 
are stored in OCM. Obtained results are in line with those 
obtained under radiation in [7] using a similar benchmark. 

 

 
 

Fig. 7. Error histogram for Z5 (CUT3) - OCM 

 
In the case of Unidentified Registers area, Z3, we do not 

know which resource is being injected, so we try to deduct it by 
exercising the architecture with all versions of the application. 
We injected 4,159 faults for CUT1, obtaining 61 errors 
(1.47%), which means that this resource may be intensively 
used by the benchmark. In addition, 3,808 faults were injected 
in Z3 for CUT2, and 5,715 faults for CUT3, obtaining 0 errors 
(0%) in both cases. When injecting faults in the Z3 area using 
CUT1, more than 81% of the obtained errors are related with 
data, although some Data Abort exception errors are also 

observed. Fig. 8 summarizes the error distribution in this zone 
for the three versions of the benchmark. However, Z3 area only 
shows sensitivity to errors when executing CUT1 (caches 
enabled), obtaining 61 errors, and no error was observed when 
caches were disabled (CUT2 and CUT3). Considering this 
behavior, we can deduce that this zone is probably related in 
some way to the cache operation, so in the case that caches are 
not used, this zone is unused as well. Geometrically, this zone 
is very close to L1 Data Cache and presents a similar error rate, 
which reinforces the deduction that it is related with it. 
Observed error distribution in this zone shows a high number 
of Result errors (similar to L1 Data Cache error distribution) 
but also a moderate number of Data Abort errors. We 
hypothesize that this region could be part of the L1 Data Cache 
controller as it is only used when the L1 Data Cache is used and 
if a fault is injected in it, it could become either a Result error 
or a Data Abort depending on whether the fault affects cache 
memory cells or the address translation mechanism, 
respectively. 

 

 
 

Fig. 8. Error histogram for Z3 - unidentified registers region 

 
Obtained trace information is very rich to perform error 

diagnosis. In the aforementioned cases, the majority of errors 
are similar, so we categorize them in predefined error categories 
for the sake of brevity. However, further information can be 
extracted by carefully analyzing the collected evidences about 
the errors.  

As an example, we analyze in detail one of the Invalid PC 
errors on L1 Instruction Cache. From the trace information we 
can obtain the PC values before the error. Table II shows the 
values for the PC in the moment of the error, normalized as t, 
and for two instants earlier, namely t-1 and t-2. It is important 
to note that the trace only exports PC values in points where the 
program flow can be changed (mainly branches and 
exceptions). By comparing the PC progression with the 
disassembled code depicted in Table III we can see that the 
error is a bit-flip in an instruction code provoking a change of 
0x00100000 in the offset of the beq instruction located at 
address 0x00130240. This change results in an instruction 
code of 0x0a100013 instead of 0x0a000013, causing a 
branch to 0x00230294 instead of 0x00130294.  

Another example of trace diagnosis capabilities is that an out-
of-range loop index was found among the Timeout errors on L1 
Instruction Cache. In four error evidences, it was found that the 
matrix multiplication loop index was out of the 0-31 range, 
causing an excessive execution time leading to a timeout error. 
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We could observe this situation because we inserted specific 
instructions in the code for the ITM to export the loop index 
value through the trace. 

 
TABLE II 

PC PROGRESSION TO INVALID VALUE 

t-2 t-1 t 
0x00130244 0x00130234 0x00230294 

 
TABLE III 

DETAILED ADDRESS CONTENTS 

Address Content Instruction 
0x00130230 ea000003 b      130244 
0x00130234 e2822010 add    r2, r2, #16 
0x00130238 e28cc010 add    ip, ip, #16 
0x0013023C e1520004 cmp    r2, r4 
0x00130240 0a000013 beq    130294 
0x00130244 e992000a ldmib  r2, {r1, r3} 
0x00130248 e592000c ldr    r0, [r2, #12] 
0x0013024C e5871000 str    r1, [r7] 
0x00130250 e1530000 cmp    r3,r0 
0x00130254 01510003 cmpeq  r1, r3 
0x00130258 e5863000 str    r3, [r6] 
0x0013025C 13a0e001 movne  lr, #1 
0x00130260 03a03001 moveq  r3, #1 
0x00130264 13a03000 movne  r3, #0 
0x00130268 e5850000 str    r0, [r5] 
0x0013026C 11a0800e movne  r8, lr 
0x00130270 1affffef bne    130234 
0x00130274 e59c0004 ldr    r0, [ip, #4] 

 
Errors on matrix data can also be analyzed in detail. When 

injecting L1 Data Cache and OCM, errors in a single value, 
including bit-flips, can be identified by comparing triplicated 
data sent through the trace. Such errors may be associated to a 
fault injected on a stored result value. However, we found at 
least two cases in which none of the three copies of a value 
matched when injecting L1 Data Cache and one more in OCM. 
By comparing the downloaded memory contents in the moment 
of those errors with the golden reference we obtained that in one 
case (L1 Data Cache) there was one correct value and two 
incorrect values while in the other two cases none of the value 
copies were correct. As demonstrated, when introducing the 
golden reference, we can refine the case granularity and 
discover more cases. This is particularly relevant attending to 
results obtained for Z3 region. In seven cases, some of the 
matrix redundant values were equal, but wrong, in all the copies 
at the same time. This case is unique for Z3 so it could allow to 
link similar errors to a fault within this region. Additionally, at 
least two cases in which two redundant values were equal, but 
wrong, were found on L1 Data Cache and Z3 regions. 

The trace information about errors can also be used to obtain 
not only particular-case results, as in the last two examples, but 
also to extract error tendencies. As we have a continuous stream 
of trace information, we can know what happened before an 
error. In Fig. 9, it is presented the last instruction before 119 
Data Abort errors related to L2 Cache when executing CUT1. 
It can be found that some addresses are much more prone to 

Data Abort error than others. In fact, the instruction at address 
0x00130164 accumulates almost 50% of error incidence. 
Attending to such information, a software designer could put 
more effort to harden the code in the most problematic parts. 

 

 
 

Fig. 9. Last instructions before Data Aborts related to L2 Cache (CUT1) 

 
Results shown in this work are in good agreement with those 

obtained in previous radiation experiments [7]. Nevertheless, it 
must be noted that radiation testing and laser injection are quite 
different, so it is important to be careful when comparing results 
from both types of experiments. In radiation testing, it is 
possible to enable or disable some resources to isolate the 
contribution of each one to the final error distribution as we did 
in [7]. However, there are other resources, such as the registers, 
the pipeline, the arithmetic unit or the processor core itself, that 
cannot be disabled, because they are needed for the device to 
perform properly. Thus, radiation testing will always provide a 
result of the combined contribution of each resource to the total 
number of errors, given by the sensitivity of each resource. In 
contrast, laser testing can completely focus on specific 
resources and provide error results which can be closely related 
to them. We can conclude that the similarity of the results 
between radiation testing and laser scanning will be affected by 
the sensitivity of the resources under test. In the radiation 
campaigns performed in [7], L2 Cache, OCM, L1 Instruction 
Cache and L1 Data Cache were found to have a high sensitivity 
as they incremented the cross section by one to four orders of 
magnitude depending on the case. That high error sensitivity is 
probably a major reason for the agreements found in the results 
of both works.  

Laser scanning allows us to plot error distribution on an XY 
graph, so it is possible to evaluate if error occurrence follows 
any recognizable pattern. Fig. 10 show the geometrical 
distribution for some of the previously presented errors, namely 
for L1 Data and Instruction caches for CUT1, while Fig. 11 
shows the geometrical distribution by category for the Z3 
region also for CUT1. 

It is remarkable that in the case of L1 Data Cache, Fig. 10 a), 
errors are spread across the entire studied area so no correlation 
between the layout geometry and error appearance can be 
inferred. Matrices are bigger than the cache, so the cache is 
entirely used and often refreshed. Consequently, errors are 
expected to have a similar effect on execution in any position. 

The case of L1 Instruction Cache is the opposite of the L1 
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Data Cache, as the executed code is very short and fits 
completely in the instruction cache. It can be observed in Fig. 
10 b) that only some parts of the memory are producing errors. 
Particularly, there are many errors accumulated in a horizontal 
line at -1530µm.  

 

 
 

Fig. 10. Error geometrical distribution (CUT1) 

 

 
 

Fig. 11. Error geometrical distribution by category (CUT1) 
 

The geometrical error distribution in Z3 region (unidentified 
registers) presents very sharply delimited error regions. To 
clarify the impact of each area in the error count, we take 
advantage of the capability of this method to generate 
sensitivity maps by correlating error types with the geometry of 
the device. A colored plot of the error geometrical distribution 
for Z3 zone is presented in Fig. 11. We distinguish in it 3 types 
of errors: Data Abort exceptions, Result few errors and Result 
many errors. It can be clearly observed that there are two zones 
contributing only to Data Abort errors and four zones 
contributing to errors in result matrix, in which the geometrical 
distribution of few errors and many errors on result matrix can 
be discriminated. 

V. CONCLUSIONS 

This work demonstrates the use of trace information to 
diagnose laser-induced errors. Diagnosis information obtained 
from the memory and the trace interface allows us to classify 
the observed errors in several categories and enables a rich 
analysis. By correlating the laser position with diagnosis 

information, we obtained that different error types are found 
depending on the injected area. Moreover, their geometrical and 
statistical distribution has a highly distinctive pattern, like a 
fingerprint. 

Obtained diagnosis results allowed to identify functional 
regions on a Cortex-A9 processor thanks to the observed error 
statistical distribution. It must be pointed out that this 
information is not generally available for COTS and we are able 
to obtain it by combining accurate laser fault injection and 
intensive trace information observation. 

Moreover, the presented approach has been demonstrated to 
be highly accurate and allow to identify the faulty bit on 
detected control-flow errors. 

Laser fault injection results are in good agreement with 
radiation test results and confirm some of the hypotheses made 
in previous work [7]. By combining both works, we 
demonstrate that the proposed technique can effectively 
identify which processor resource has the highest sensitivity to 
each error type. 
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